Group actions on homogeneous spaces, Euclidean buildings, and moduli spaces
齐次空间、欧几里得建筑和模空间的群作用
基本信息
- 批准号:0604885
- 负责人:
- 金额:$ 10.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2007-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is aimed at relating properties of group actions onhomogeneous spaces, Euclidean buildings, and moduli spaces. Specifictopics for investigation include: (1) Quasi-isometries of discretesubgroups of semisimple Lie groups. (2) Finiteness properties offunction-field-arithmetic groups (with Kai-Uwe Bux). (3) Dehn functions ofarithmetic groups (with Gregory Margulis). (4) Unipotent flows on spacesof abelian differentials (with Kariane Calta).Homogeneous spaces are geometric objects that can be used to analyze arrays of numbers that satisfy certain equations. Euclidean buildings are also geometric objects, and they can be used to study arrays of generalized kinds of ``numbers''. Moduli spaces are geometric objects that can be used to parameterize spaces related to equations of complex numbers. Much effort has been put into comparing and contrasting these three objects, as each plays a significant role in the field of mathematics. The goal of this project is to continue to examine links between these three fundamental objects with the hope that a deeper understanding of the relationships between the three will bear insights for each as individuals.
该项目旨在探讨同质空间、欧几里得建筑和模空间中群体行为的相关属性。具体的研究课题包括:(1)半单李群的离散子群的拟等距。(2)函数域算术群的有限性(带Kai-Uwe Bux)。(3)算术群的Dehn函数(与Gregory Margulis合作)。(4)阿贝尔微分空间上的幂偶流(带Kariane Calta)。齐次空间是可以用来分析满足某些方程的数字数组的几何对象。欧几里得建筑也是几何对象,它们可以用来研究广义“数”的数组。模空间是一种几何对象,可以用来参数化与复数方程相关的空间。对这三个对象进行比较和对比已经付出了很多努力,因为它们在数学领域中都起着重要的作用。该项目的目标是继续研究这三个基本对象之间的联系,希望对三者之间的关系有更深入的了解,从而为每个个体提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Wortman其他文献
Exponential higher dimensional isoperimetric inequalities for some arithmetic groups
- DOI:
10.1007/s10711-010-9523-6 - 发表时间:
2010-08-04 - 期刊:
- 影响因子:0.500
- 作者:
Kevin Wortman - 通讯作者:
Kevin Wortman
Kevin Wortman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Wortman', 18)}}的其他基金
Geometry and Cohomology of Arithmetic and Related Groups
算术及相关群的几何和上同调
- 批准号:
1509182 - 财政年份:2015
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Conference Proposal: Wasatch Topology Conference, August 2014
会议提案:Wasatch 拓扑会议,2014 年 8 月
- 批准号:
1405686 - 财政年份:2014
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Geometry of Arithmetic Groups and Related Groups
算术群及相关群的几何
- 批准号:
1206946 - 财政年份:2012
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Large-scale geometry of arithmetic groups and universal lattices
算术群和通用格的大规模几何
- 批准号:
0905891 - 财政年份:2009
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Group actions on homogeneous spaces, Euclidean buildings, and moduli spaces
齐次空间、欧几里得建筑和模空间的群作用
- 批准号:
0750032 - 财政年份:2007
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
相似国自然基金
骨骼肌中胰高血糖素受体的表达及其调控血糖稳态的作用与机制研究
- 批准号:82370820
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
The role of youth voluntary actions in Disaster Risk Reduction in the Ganges Brahmaputra and Meghna (GBM) delta
青年志愿行动在雅鲁藏布江和梅格纳河三角洲减少灾害风险中的作用
- 批准号:
2593674 - 财政年份:2025
- 资助金额:
$ 10.87万 - 项目类别:
Studentship
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
- 批准号:
2400191 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Conference: Groups Actions and Rigidity: Around the Zimmer Program
会议:团体行动和刚性:围绕 Zimmer 计划
- 批准号:
2349566 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
- 批准号:
10103499 - 财政年份:2024
- 资助金额:
$ 10.87万 - 项目类别:
Collaborative R&D
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
- 批准号:
2230900 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
Conference: Groups, Actions, and Geometries
会议:群体、行动和几何
- 批准号:
2309427 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Collaborative Research: Mobilizing Physics Teachers to Promote Inclusive and Communal Classroom Cultures through Everyday Actions
合作研究:动员物理教师通过日常行动促进包容性和公共性的课堂文化
- 批准号:
2300609 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Categorical centers, cactus actions, and diagram algebras
分类中心、仙人掌动作和图代数
- 批准号:
2302664 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Standard Grant
Combinatorial Objects and Actions in Higher Dimensional Settings
高维设置中的组合对象和动作
- 批准号:
2247089 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Continuing Grant
The neural and glial bases of diet-induced deficits in control of reward-seeking actions
饮食引起的奖励寻求行为控制缺陷的神经和神经胶质基础
- 批准号:
490692 - 财政年份:2023
- 资助金额:
$ 10.87万 - 项目类别:
Operating Grants