Algorithms for subgroups and automorphisms of right-angled Artin Groups
直角 Artin 群的子群和自同构的算法
基本信息
- 批准号:1206981
- 负责人:
- 金额:$ 12.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A finitely-presented group is a right-angled Artin group (RAAG) if the only relations between the generators are that some pairs of generators commute. The P.I. will study the subgroup structure and automorphism groups of RAAGs. The main goal of this project is to develop algorithms for analyzing RAAGs; these algorithms will generalize classical algorithms including Nielsen reduction, Stallings folding, column reduction, and Whitehead's algorithm. Goal applications include an algorithm for testing membership in automorphism group orbits in RAAGs, and restricted versions of the subgroup membership problem. A second goal is to define combinatorial and topological objects on which automorphism groups of RAAGs act, and to use these actions to better understand the automorphism groups. A third goal is to prove homological finiteness results about important subgroups of automorphism groups of RAAGs; this part of the project will focus on automorphism groups of free groups specifically.A right-angled Artin group (RAAG) is a type of algebraic structure in which all equations are consequences of equations asserting that certain pairs of elements commute (equations of the form "x*y=y*x"). The P.I. will research the structure of general RAAGs, specifically the substructures of these objects, and their symmetries (automorphisms). RAAGs and their substructures and symmetries are important objects of study in geometric group theory; these groups include special cases that have been studied since the origins of group theory. Free abelian groups (for example the lattice of integer points in coordinate n-space) are examples of RAAGs; their automorphism groups are matrix groups, and many questions about their structure and symmetry can be answered using familiar matrix techniques such as row and column reduction. A class of groups called free groups are also examples of RAAGs. Nielsen reduction and Whitehead's algorithm are combinatorial algorithms from the 1920's and 1930's for analyzing certain aspects of free groups, and Stallings folding is a related graph-theoretical technique from the 1970's. The main goal of the project is to construct common generalizations of these classical free group algorithms and matrix techniques that would simultaneously apply to all RAAGs, or to prove that no such generalizations exist.
有限表示群是直角Artin群(RAAG),如果生成元之间的唯一关系是某些生成元对可交换。P.I.将研究RAG的子群结构和自同构群。这个项目的主要目标是开发分析RAG的算法;这些算法将推广经典算法,包括Nielsen归约、Stallings折叠、列归约和Whitehead算法。目标应用包括测试RAG中自同构群轨道的成员资格的算法,以及子群成员资格问题的受限版本。第二个目标是定义RAG的自同构群作用于其上的组合和拓扑对象,并使用这些作用来更好地理解自同构群。第三个目标是证明RAAG的自同构群的重要子群的同调有限性结果;该项目的这一部分将具体地关注自由群的自同构群。直角Artin群(RAAG)是一种代数结构,其中所有方程都是断言某些元素对可交换的方程的结果(形式为x*y=y*x的方程)。P.I.将研究一般RAG的结构,特别是这些对象的子结构,以及它们的对称性(自同构)。RAG及其子结构和对称性是几何群论中的重要研究对象,这些群包括自群论诞生以来一直被研究的特殊情况。自由阿贝尔群(例如,坐标n空间中的整点的格子)是RAAG的例子;它们的自同构群是矩阵群,并且许多关于它们的结构和对称性的问题可以使用熟悉的矩阵技术来回答,例如行和列归约。一类称为自由组的组也是RAG的例子。尼尔森归约和怀特黑德算法是20世纪20年代S和30年代S提出的用于分析自由群某些方面的组合算法,而Stallings折叠是70年代S提出的一种相关图论技术。该项目的主要目标是构造这些经典自由群算法和矩阵技术的共同推广,它们将同时适用于所有RAG,或者证明不存在这样的推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Day其他文献
An inclusive dose pole for treatment of schistosomiasis in infants and preschool children with praziquantel
- DOI:
10.1016/j.trstmh.2010.07.012 - 发表时间:
2010-11-01 - 期刊:
- 影响因子:
- 作者:
Jose Carlos Sousa-Figueiredo;Matthew Day;Martha Betson;Narcis B. Kabatereine;J. Russell Stothard - 通讯作者:
J. Russell Stothard
The complex of partial bases for F n and finite generation of the Torelli subgroup of Aut (F n )
- DOI:
10.1007/s10711-012-9765-6 - 发表时间:
2012-08-14 - 期刊:
- 影响因子:0.500
- 作者:
Matthew Day;Andrew Putman - 通讯作者:
Andrew Putman
The human RIF1-Long isoform interacts with BRCA1 to promote recombinational fork repair under DNA replication stress
人类 RIF1 长亚型与 BRCA1 相互作用,以促进 DNA 复制应激下的重组叉修复
- DOI:
10.1038/s41467-025-60817-y - 发表时间:
2025-07-01 - 期刊:
- 影响因子:15.700
- 作者:
Qianqian Dong;Matthew Day;Yuichiro Saito;Emma Parker;Lotte P. Watts;Masato T. Kanemaki;Antony W. Oliver;Laurence H. Pearl;Shin-ichiro Hiraga;Anne D. Donaldson - 通讯作者:
Anne D. Donaldson
Megafires on the Southern Great Plains
南部大平原的特大火灾
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.1
- 作者:
T. Lindley;Douglas A. Speheger;Matthew Day;G. Murdoch;Bradley R. Smith;Nicholas J. Nauslar;Drew C. Daily - 通讯作者:
Drew C. Daily
Using the household hunger scale to improve analysis and classification of severe food insecurity in famine-risk conditions: Evidence from three countries
- DOI:
10.1016/j.foodpol.2023.102449 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Daniel Maxwell;Guhad Adan;Peter Hailey;Matthew Day;Stephen B.J. Odhiambo;Lilian Kaindi;James Njiru;Aishwarya Venkat;Anastasia Marshak - 通讯作者:
Anastasia Marshak
Matthew Day的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Day', 18)}}的其他基金
40th and 41st Arkansas Spring Lecture Series in the Mathematical Sciences
第 40 届和第 41 届阿肯色州春季数学科学系列讲座
- 批准号:
1465070 - 财政年份:2015
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
相似海外基金
The Apocalypse of QAnon: What is the relationship between prophecy and violence in the subgroups of the Q Movement?
QAnon 的启示录:Q 运动各分支中的预言和暴力之间有何关系?
- 批准号:
2903652 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Studentship
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Complex WTC Exposures Impacting Persistent Large and Small Airflow Limitation and Vulnerable Subgroups in the WTC Survivor Population
复杂的世贸中心暴露影响了世贸中心幸存者群体中持续的大、小气流限制和弱势群体
- 批准号:
10749125 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Dissecting functional subgroups and closed-loop circuits between the pedunculopontine nucleus and the basal ganglia
解剖桥脚核和基底神经节之间的功能亚组和闭环回路
- 批准号:
10677467 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Net Clinical Benefit and Cost-Effectiveness of Indefinite Anticoagulation Among Clinically Relevant Subgroups of Patients with First Unprovoked Venous Thromboembolism
首次无端静脉血栓栓塞临床相关亚组患者无限期抗凝的净临床效益和成本效益
- 批准号:
493128 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Mapping the Cerebellar Origins of Medulloblastoma Subgroups
绘制髓母细胞瘤亚群的小脑起源图
- 批准号:
10587809 - 财政年份:2023
- 资助金额:
$ 12.19万 - 项目类别:
Quantum Subgroups of the Low Rank Lie Algebras
低阶李代数的量子子群
- 批准号:
2245935 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
The impact of clinical interventions for sepsis in routine care and among detailed patient subgroups: A novel approach for causal effect estimation in electronic health record data
脓毒症临床干预措施对常规护理和详细患者亚组的影响:电子健康记录数据因果效应估计的新方法
- 批准号:
10686093 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Examining the Integrative Effects of Adolescent, Parent, Provider, and Practice Level Factors on Adolescents' HPV Vaccine Uptake across Six Asian American Subgroups
检查青少年、家长、提供者和实践水平因素对六个亚裔美国人亚群体青少年 HPV 疫苗接种的综合影响
- 批准号:
10371334 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Multicolor cell imaging analysis of lipid droplet subgroups using functional carbon dots
使用功能碳点对脂滴亚群进行多色细胞成像分析
- 批准号:
22F22408 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows