Enhanced Diffusivity Along Dislocations--From Quantum Tunneling to Classical Transport in the Pd-H System

沿位错的增强扩散性——从量子隧道到 Pd-H 系统中的经典输运

基本信息

  • 批准号:
    1207102
  • 负责人:
  • 金额:
    $ 45.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:The project will study quantification of enhanced diffusivity of hydrogen along dislocations (hydrogen pipe diffusion) in deformed Pd via quasi-elastic neutron scattering measurements and first-principles computations. The work scope takes advantage of protocols developed recently under NSF sponsorship to study hydrogen at very low concentration and as a function of temperature in deformed Pd. The experimental methodologies use advanced state-of-the-art quasi-elastic neutron spectrometers at the Spallation Neutron Source and the NIST Center for Neutron Research and employ computational protocols to simulate hydrogen within the local strain environment of a dislocation (relaxed into two partial dislocations) supercell. The combined experimental and computational efforts will provide the first direct quantification of hydrogen transport along dislocations over a temperature regime from classic transport (translational diffusion via site hopping) to quantum tunneling. Key objectives of the work are the direct measurement of pipe diffusion activation energy, the diffusion constant, extension to the quantum tunneling temperature regime, and the physical basis for enhanced diffusivity at dislocations from first-principles computations. A secondary objective is the study of grain boundary diffusion using the same experimental and computational methodologies. The work scope represents an extension of current advanced quasi-elastic neutron scattering capabilities in the U.S. to a regime of low hydrogen inventory and low temperature, thereby establishing new sensitivities for these instruments in the quantification of hydrogen.NON-TECHNICAL SUMMARY:Impurities in metals influence many important properties related to performance and applications. Metals are crystalline in that the atoms form an ordered arrangement. Disruptions of this ordered arrangement are common and are called lattice defects. This work involves the study of hydrogen, an impurity, and one type of lattice defect, a dislocation. In particular, the interaction of hydrogen and dislocations in the metal palladium will be studied to better understand how the solute impurity moves or diffuses along the dislocation lattice defects. The project will employ advance computational tools and advanced neutron scattering instrumentation to achieve the stated goals. The work scope represents a significant extension of experimental and computational methodologies to new regimes of hydrogen diffusion behavior. It is anticipated that the research will promote an improved understanding of the influence of lattice defects on hydrogen transport in metals containing dislocations.The work will have an impact beyond a detailed study of hydrogen in palladium, potentially affecting areas of materials science ranging from embrittlement to energy storage in metal hydrides. Two graduate students will be educated and trained in two research methodologies, advanced neutron scattering techniques and first-principles computations, that are at the forefront of scientific inquiry. The breadth of first-principles computations in materials research is extensive, as are the recent investments in neutron scattering infrastructure at NIST, ORNL, and LANL. Graduate students trained in the use of these protocols will be well positioned for productive scientific careers.
技术摘要:该项目将通过准弹性中子散射测量和第一原理计算,研究变形Pd中氢沿着位错(氢管扩散)的增强扩散率的量化。 工作范围利用最近在NSF赞助下开发的协议,以研究在非常低的浓度下的氢,并作为变形Pd中温度的函数。 实验方法使用先进的准弹性中子能谱仪在Spandex中子源和NIST中心的中子研究,并采用计算协议来模拟氢的局部应变环境中的位错(放松成两个部分位错)超晶胞。 结合实验和计算的努力将提供第一个直接量化的氢运输沿着位错的温度制度,从经典的运输(平移扩散通过网站跳跃)量子隧穿。 这项工作的主要目标是直接测量管道扩散激活能,扩散常数,量子隧穿温度制度的扩展,以及增强扩散率的物理基础,从第一原理计算位错。 第二个目标是使用相同的实验和计算方法研究晶界扩散。 该工作范围代表了美国目前先进的准弹性中子散射能力在低氢存量和低温范围内的扩展,从而为这些仪器在氢定量方面建立了新的灵敏度。非技术总结:金属中的杂质影响许多与性能和应用相关的重要特性。 金属是晶体,因为原子排列有序。 这种有序排列的破坏是常见的,称为晶格缺陷。 这项工作涉及氢,杂质和一种类型的晶格缺陷,位错的研究。 特别地,将研究金属钯中的氢和位错的相互作用,以更好地理解溶质杂质如何沿着位错晶格缺陷移动或扩散。 该项目将采用先进的计算工具和先进的中子散射仪器来实现既定目标。 工作范围代表了一个显着的扩展实验和计算方法的新制度的氢扩散行为。 预计这项研究将促进更好地理解晶格缺陷对含位错金属中氢输运的影响。这项工作的影响将超出对钯中氢的详细研究,可能影响从金属脆化到能量储存的材料科学领域。 两名研究生将接受两种研究方法的教育和培训,先进的中子散射技术和第一原理计算,这是科学探究的最前沿。 材料研究中第一性原理计算的广度是广泛的,NIST、ORNL和LANL最近对中子散射基础设施的投资也是如此。 在使用这些协议的培训研究生将很好地定位为生产性的科学事业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brent Heuser其他文献

Steam Oxidation of Zirconium–Yttrium Alloys from 500– $$1100\,^{\circ }\text {C}$$

Brent Heuser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brent Heuser', 18)}}的其他基金

Hydrogen-Dislocation Interactions at Low Temperature in Deformed Pd: Spatial and Vibrational Characterization Using Neutron Scattering and Advanced Computational Techniques
变形钯中低温下的氢位错相互作用:利用中子散射和先进计算技术进行空间和振动表征
  • 批准号:
    0804810
  • 财政年份:
    2008
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Continuing Grant
SGER: Demonstration of Local Lattice Strain Measurement Associated with Metal Hydride Particles using Coherent X-Ray Diffraction
SGER:使用相干 X 射线衍射演示与金属氢化物颗粒相关的局部晶格应变测量
  • 批准号:
    0634336
  • 财政年份:
    2006
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Standard Grant
Hydrogen Phase Behavior in Thin-Film Metals
薄膜金属中的氢相行为
  • 批准号:
    9982520
  • 财政年份:
    2000
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Continuing Grant
Observation of Hydrogen Interactions with Defects in Metals
氢与金属缺陷相互作用的观察
  • 批准号:
    9496297
  • 财政年份:
    1994
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Continuing Grant
Observation of Hydrogen Interactions with Defects in Metals
氢与金属缺陷相互作用的观察
  • 批准号:
    9213867
  • 财政年份:
    1993
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Continuing Grant

相似海外基金

Analysis of wall damping effect of turbulence using non-local eddy diffusivity
利用非局部涡扩散系数分析湍流壁面阻尼效应
  • 批准号:
    23K03670
  • 财政年份:
    2023
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high-precision and safe measurement method based on the photothermal effect for thermal diffusivity of low GWP refrigerant
基于光热效应的低GWP制冷剂热扩散率高精度、安全测量方法开发
  • 批准号:
    23K13269
  • 财政年份:
    2023
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Decoupling Hydrogel Stiffness and Diffusivity for Hematopoietic Stem Cell Culture and Differentiation
用于造血干细胞培养和分化的水凝胶刚度和扩散率的解耦
  • 批准号:
    10647478
  • 财政年份:
    2023
  • 资助金额:
    $ 45.01万
  • 项目类别:
Mechanism and impact of enhanced thermal diffusivity due to double-diffusive convection on ocean circulation, climate and ecosystem
双扩散对流增强热扩散率对海洋环流、气候和生态系统的作用机制及影响
  • 批准号:
    21H04921
  • 财政年份:
    2021
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CAREER: An Efficient First-Principles Method for Calculating Deformation Properties, Diffusivity, and Secondary Creep-Rate Behavior in BCC High-Entropy Alloys
职业生涯:一种计算 BCC 高熵合金变形特性、扩散率和二次蠕变速率行为的有效第一性原理方法
  • 批准号:
    2046670
  • 财政年份:
    2021
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Continuing Grant
Diffusion Phenomena in Cells: Superstatistical Diffusion Theory and Formal Analogy between Diffusivity and Thermodynamics
细胞内的扩散现象:超统计扩散理论以及扩散率与热力学之间的形式类比
  • 批准号:
    21K03394
  • 财政年份:
    2021
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Testing New Formulae for Pressure Derivatives of Specific Heat, Thermal Conductivity, and Thermal Diffusivity
EAGER:测试比热、热导率和热扩散率的压力导数的新公式
  • 批准号:
    2122296
  • 财政年份:
    2021
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Standard Grant
Analysis and modeling of spatial and temporal non-local properties of turbulent eddy diffusivity approximation
湍流涡扩散率近似的时空非局域特性分析与建模
  • 批准号:
    20K04282
  • 财政年份:
    2020
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Influence of microstructure on the diffusivity of hydrogen in advanced steels
先进钢中显微组织对氢扩散率的影响
  • 批准号:
    2296091
  • 财政年份:
    2019
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Studentship
From Boundary Layer to Deep Convection: The Multi-Plume Eddy-Diffusivity/Mass-Flux (EDMF) Fully Unified Parameterization
从边界层到深对流:多羽流涡扩散率/质量通量 (EDMF) 完全统一参数化
  • 批准号:
    1916619
  • 财政年份:
    2019
  • 资助金额:
    $ 45.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了