Quasi-Isometries and Boundaries in Rigidity

准等距和刚度边界

基本信息

  • 批准号:
    1207296
  • 负责人:
  • 金额:
    $ 15.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This research proposal concerns Gromov's program on the large scale geometry of finitely generated groups. The main theme present in the PI's research is how analysis on a suitably defined boundary at infinity can be used to answer questions about the large scale geometry of certain groups. While the PI plans to study traditional boundaries of hyperbolic groups the main focus of this proposal is on boundaries of solvable groups. One of the main tool used by the PI is recent work of Eskin-Fisher-Whyte and Peng on the structure of quasi-isometries of certain solvable groups. By studying boundaries of these groups the PI has contributed to and hopes to expand the understanding of quasi-isometries between solvable groups as well as lattice envelopes of these groups. More importantly the PI has been able to contribute to basic questions raised by the Gromov program. In particular, the PI has providing counter examples to demonstrate the distinction between quasi-isometric and bilipschitz equivalence. This is a little understood distinction that the PI plans to explore.Quasi-isometries provide a notion of similarity between mathematical spaces when viewed from a far away distance. A useful analogy is to imagine that two forests composed of different trees will look like indistinguishable green regions when viewed from a satellite. Alternatively, one can visualize the `large scale structure' of a space by placing the viewer inside the (infinite) space and viewing the 'boundary' at infinity. This is much like a viewer gazing out to the horizon. It is these two perspectives and their interplay that are at the core of this proposal. Both notions have been fruitful recently in the study of problems in many areas of mathematics but particularly when the mathematical spaces arise from algebraic objects (finitely generated groups). The PI's research focuses on how restricting to specific quasi-isometries can change the notion of similarity between finitely generated groups as well as how comparing boundaries of spaces can be used to show two groups are similar.
本研究计划涉及Gromov的计划,在大规模几何学的非线性生成的群体。PI研究的主要主题是如何在无穷远处适当定义的边界上进行分析,以回答某些群体的大规模几何问题。虽然PI计划研究双曲群的传统边界,但本提案的主要重点是可解群的边界。PI使用的主要工具之一是Eskin-Fisher-Whyte和Peng最近关于某些可解群的准等距结构的工作。通过研究这些群体的边界,PI有助于并希望扩大可解群体之间的准等距的理解,以及这些群体的格包络。更重要的是,PI已经能够为Gromov计划提出的基本问题做出贡献。特别是,PI提供了反例来证明准等距和bilipschitz等价之间的区别。这是PI计划探索的一个不太容易理解的区别。准等距提供了一个从远处观察时数学空间之间相似性的概念。一个有用的类比是想象两个由不同树木组成的森林在从卫星上看时看起来像是无法区分的绿色区域。或者,人们可以通过将观察者置于(无限)空间内并观察无限远处的“边界”来可视化空间的“大尺度结构”。这很像一个观众凝视着地平线。这两个观点及其相互作用是本建议的核心。这两个概念已经卓有成效最近在研究问题的许多领域的数学,但特别是当数学空间出现的代数对象(代数生成群)。PI的研究重点是如何限制到特定的准等距可以改变的概念之间的相似性生成的群体,以及如何比较空间的边界可以用来显示两个群体是相似的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tullia Dymarz其他文献

Bijective Quasi-Isometries of Amenable Groups
服从群的双射拟等距
  • DOI:
    10.1090/conm/372/06883
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tullia Dymarz
  • 通讯作者:
    Tullia Dymarz
Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces
  • DOI:
    10.1007/s10711-010-9548-x
  • 发表时间:
    2011-03-31
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Tullia Dymarz;Irine Peng
  • 通讯作者:
    Irine Peng
Bilipschitz versus quasi-isometric equivalence for higher rank lamplighter groups
Bilipschitz 与高等级点灯者组的准等距等效
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tullia Dymarz;I. Peng;J. Taback
  • 通讯作者:
    J. Taback
A Tukia-type theorem for nilpotent Lie groups and quasi-isometric rigidity of solvable groups
幂零李群的一个图基亚型定理以及可解群的拟等距刚性
  • DOI:
    10.1016/j.aim.2025.110202
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Tullia Dymarz;David Fisher;Xiangdong Xie
  • 通讯作者:
    Xiangdong Xie
Bilipschitz equivalence is not equivalent to quasi-isometric equivalence for finitely generated groups
  • DOI:
    10.1215/00127094-2010-044
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Tullia Dymarz
  • 通讯作者:
    Tullia Dymarz

Tullia Dymarz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tullia Dymarz', 18)}}的其他基金

CAREER: Metric Geometry of Solvable Groups
职业:可解群的度量几何
  • 批准号:
    1552234
  • 财政年份:
    2016
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Continuing Grant
Young Geometric Group Theory Conference
年轻几何群理论会议
  • 批准号:
    1245281
  • 财政年份:
    2012
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant

相似海外基金

Isometries and reflections over special fields
特殊领域的等轴测和反射
  • 批准号:
    575063-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Path-to-signature isometries with applications to modelling the long-term dynamics of complex systems
路径到特征等距及其在复杂系统长期动态建模中的应用
  • 批准号:
    EP/W00707X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Research Grant
Isometries on Banach algebras
Banach 代数的等距
  • 批准号:
    21K13804
  • 财政年份:
    2021
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
International Workshop on Quasi-Isometries and Groups: Rigidity and Classification
准等轴测和群国际研讨会:刚性和分类
  • 批准号:
    1910865
  • 财政年份:
    2019
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Standard Grant
Spectral isometries and Jordan isomorphisms on Banach algebras
Banach 代数上的谱等距和 Jordan 同构
  • 批准号:
    463969-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Groupes de coxeter et isometries de l'espace hyperbolique
双曲线空间的考克斯特群和等距
  • 批准号:
    389150-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Groupes de coxeter et isometries de l'espace hyperbolique
双曲线空间的考克斯特群和等距
  • 批准号:
    389150-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Studies on structures and isometries of commutative Banach algebras
交换Banach代数的结构与等距研究
  • 批准号:
    23540193
  • 财政年份:
    2011
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Groupes de coxeter et isometries de l'espace hyperbolique
双曲线空间的考克斯特群和等距
  • 批准号:
    389150-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Generalizations of perfect isometries between the sets of characters of finite groups
有限群特征集之间完美等距的推广
  • 批准号:
    22540021
  • 财政年份:
    2010
  • 资助金额:
    $ 15.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了