CAREER: Metric Geometry of Solvable Groups

职业:可解群的度量几何

基本信息

  • 批准号:
    1552234
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The notion of a group was originally introduced to describe the symmetries of a geometrical object. Gromov's program of studying groups as geometric objects reverses this idea. Abstractly a group is given by a collection of elements with some notion of multiplication of elements. When a group can be realized as the symmetries of a geometric object it inherits the geometry of the object itself. We can gain information about an abstract group (and the properties of its multiplication) by analyzing the geometry of the object it is acting upon. This is the genesis of geometric group theory. This project will allow the PI to continue her study of the geometry of a class of groups with particularly nice multipication: the so called solvable groups. Additionally the PI will run an annual one day regional workshop on geometric group theory for graduate students and postdocs in the midwest and two five day workshops to help beginning researchers learn how to find problems and collaborations to work on. Finally the PI will continue her work on an after school mathematics program for high schools girls whose aim is to encourage girls to pursue STEM related fields. This project allows the PI to continue her research on Gromov's program of studying finitely generated groups as geometric objects. In particular the PI will use and extend "coarse differentiation" techniques of Eskin-Fisher-Whyte to answer fundamental questions in geometric group theory. Gromov's program of studying finitely generated groups as geometric objects revolutionized group theory. It brought in techniques from geometry and analysis to help better understand infinite finitely generated groups. The rigidity of lattices in solvable Lie groups was one of the major open problems in this area until Eskin-Fisher-Whyte's breakthrough and new "coarse differentiation" techniques. The PI has used and will continue to use the work of Eskin-Fisher-Whyte to provide answers to fundamental questions raised in the Gromov program and has contributed to the program by proving rigidity results on the large scale geometry of solvable groups.
群的概念最初是用来描述几何对象的对称性的。 格罗莫夫把群体当作几何对象来研究的方案,则颠覆了这一观点。抽象地说,一个群是由元素的集合和一些元素的乘法概念给出的。当一个组可以被实现为一个几何对象的对称时,它继承了对象本身的几何。我们可以通过分析一个抽象群所作用的对象的几何来获得关于它的信息(以及它的乘法的性质)。这就是几何群论的起源。这个项目将允许PI继续她对一类具有特别好的乘法的群的几何学的研究:所谓的可解群。 此外,PI将在中西部为研究生和博士后举办为期一天的几何群论区域研讨会,并举办两个为期五天的研讨会,帮助初学者学习如何发现问题和合作。最后,PI将继续为高中女生提供课后数学课程,其目的是鼓励女孩追求STEM相关领域。这个项目允许PI继续她对Gromov的研究计划的研究,该计划将计算机生成的群体作为几何对象。特别是PI将使用和扩展Eskin-Fisher-Whyte的“粗微分”技术来回答几何群论中的基本问题。 格罗莫夫的程序研究的几何对象生成的群体革命群论。它引入了几何学和分析的技术,以帮助更好地理解无限次生成的群。在Eskin-Fisher-Whyte取得突破和新的“粗微分”技术之前,可解李群中晶格的刚性一直是该领域的主要开放问题之一。 PI已经使用并将继续使用Eskin-Fisher-Whyte的工作来回答Gromov计划中提出的基本问题,并通过证明可解群的大规模几何的刚性结果为该计划做出了贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tullia Dymarz其他文献

Bijective Quasi-Isometries of Amenable Groups
服从群的双射拟等距
  • DOI:
    10.1090/conm/372/06883
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tullia Dymarz
  • 通讯作者:
    Tullia Dymarz
Bilipschitz maps of boundaries of certain negatively curved homogeneous spaces
  • DOI:
    10.1007/s10711-010-9548-x
  • 发表时间:
    2011-03-31
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Tullia Dymarz;Irine Peng
  • 通讯作者:
    Irine Peng
Bilipschitz versus quasi-isometric equivalence for higher rank lamplighter groups
Bilipschitz 与高等级点灯者组的准等距等效
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tullia Dymarz;I. Peng;J. Taback
  • 通讯作者:
    J. Taback
A Tukia-type theorem for nilpotent Lie groups and quasi-isometric rigidity of solvable groups
幂零李群的一个图基亚型定理以及可解群的拟等距刚性
  • DOI:
    10.1016/j.aim.2025.110202
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Tullia Dymarz;David Fisher;Xiangdong Xie
  • 通讯作者:
    Xiangdong Xie
Bilipschitz equivalence is not equivalent to quasi-isometric equivalence for finitely generated groups
  • DOI:
    10.1215/00127094-2010-044
  • 发表时间:
    2009-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Tullia Dymarz
  • 通讯作者:
    Tullia Dymarz

Tullia Dymarz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tullia Dymarz', 18)}}的其他基金

Young Geometric Group Theory Conference
年轻几何群理论会议
  • 批准号:
    1245281
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Quasi-Isometries and Boundaries in Rigidity
准等距和刚度边界
  • 批准号:
    1207296
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Metric geometry and analysis on Einstein manifolds
爱因斯坦流形的度量几何和分析
  • 批准号:
    2304818
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Geometry of metric measure spaces and pyramids
度量测量空间和金字塔的几何
  • 批准号:
    23K03104
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis and Geometry in Metric Spaces
度量空间中的分析和几何
  • 批准号:
    2154918
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Geometry of Banach Spaces and Metric Spaces
Banach 空间和度量空间的几何
  • 批准号:
    1900612
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Study of metric measure spaces with curvature-dimension conditions and its applications to Riemannian geometry
曲率维数条件下的度量测度空间研究及其在黎曼几何中的应用
  • 批准号:
    18K13412
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in Ricci flow, Riemannian geometry, metric geometry and PDE
里奇流、黎曼几何、度量几何和偏微分方程主题
  • 批准号:
    2104917
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Geometry and analysis on metric measure spaces based on the theory of Markov processes and optimal mass transport
基于马尔可夫过程和最优传质理论的几何与度量测度空间分析
  • 批准号:
    17H02846
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis and geometry of metric measure spaces
度量测度空间的分析和几何
  • 批准号:
    1812879
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Metric geometry and Finsler structures of low regularity
公制几何和低正则性芬斯勒结构
  • 批准号:
    390960259
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grants
Quantitative topology and metric geometry
定量拓扑和度量几何
  • 批准号:
    487617-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了