Traces in higher categories, stable homotopy theory, and applications to fixed point theory

高范畴中的迹、稳定同伦理论以及不动点理论的应用

基本信息

  • 批准号:
    1207670
  • 负责人:
  • 金额:
    $ 10.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2015-11-30
  • 项目状态:
    已结题

项目摘要

The standard approaches to the Lefschetz fixed point theorem and its converse have focused on integer valued invariants: the Lefschetz number and Nielsen number. These invariants are easy to define but very difficult to generalize. The PI has developed an approach that produces invariants that are elements of stable homotopy groups of spheres and twisted loop spaces, as well as more algebraic targets. These invariants readily generalize and agree with the integer valued invariants in the classical cases. In this project the PI proposes further generalizations to coincidences and periodic points. She also plans to explore extensions of important classical properties of fixed point invariants to generalizations such as equivariant and fiberwise fixed point invariants. The PI intends to mentor graduate students and graduate school bound undergraduates, expand graduate student participation in the topology seminar and facilitate greater interaction between students and external visitors.Fixed points arises in many different areas of mathematics and have a variety of applications. In some cases fixed points are very well understood, but there are also many important questions that have not been resolved. The goal of this project is to use tools from algebraic topology to define new invariants that detect fixed points and their generalizations and to provide a better understanding of the structure of an important collection of fixed point invariants. This project involves new approaches to a classical area of algebraic topology that should be amenable to doing computations. Students at different levels will be involved in the project.
莱夫谢茨不动点定理及其匡威定理的标准方法集中在整数值不变量:莱夫谢茨数和尼尔森数。这些不变量很容易定义,但很难推广。PI已经开发出一种方法,该方法产生的不变量是球面和扭曲环空间的稳定同伦群的元素,以及更多的代数目标。这些不变量很容易推广,并同意在经典情况下的整数值不变量。在这个项目中,PI提出了对巧合和周期点的进一步推广。她还计划探索扩展的重要经典性质的不动点不变量的推广,如equivariant和fiberwise不动点不变量。PI旨在指导研究生和研究生院的本科生,扩大研究生参与拓扑研讨会,并促进学生和外部访问者之间更大的互动。不动点出现在许多不同的数学领域,并有各种各样的应用。在某些情况下,固定点是很好理解的,但也有许多重要的问题尚未解决。该项目的目标是使用代数拓扑工具来定义新的不变量,以检测不动点及其泛化,并提供更好的理解不动点不变量的重要集合的结构。这个项目涉及到代数拓扑学的经典领域的新方法,应该服从于做计算。不同层次的学生将参与该项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Ponto其他文献

Kathleen Ponto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Ponto', 18)}}的其他基金

FRG: Collaborative Research: Trace Methods and Applications for Cut-and-Paste K-Theory
FRG:协作研究:剪切粘贴 K 理论的追踪方法和应用
  • 批准号:
    2052905
  • 财政年份:
    2021
  • 资助金额:
    $ 10.67万
  • 项目类别:
    Standard Grant
Traces in Algebraic K-theory and Topological Fixed Point Invariants
代数 K 理论和拓扑不动点不变量中的迹
  • 批准号:
    1810779
  • 财政年份:
    2018
  • 资助金额:
    $ 10.67万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703574
  • 财政年份:
    2007
  • 资助金额:
    $ 10.67万
  • 项目类别:
    Fellowship

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Braided tensor categories, higher Picard groups, and classification of topological phases of matter
辫状张量类别、高皮卡德群以及物质拓扑相的分类
  • 批准号:
    2302267
  • 财政年份:
    2023
  • 资助金额:
    $ 10.67万
  • 项目类别:
    Standard Grant
The 3E Study: Economic and Educational Contributions to Emerging Adult Cardiometabolic Health
3E 研究:经济和教育对新兴成人心脏代谢健康的贡献
  • 批准号:
    10833954
  • 财政年份:
    2023
  • 资助金额:
    $ 10.67万
  • 项目类别:
Post-Baccalaureate Research and Education Program (PREP) for Oklahoma
俄克拉荷马州学士后研究与教育计划 (PREP)
  • 批准号:
    10556953
  • 财政年份:
    2023
  • 资助金额:
    $ 10.67万
  • 项目类别:
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
  • 批准号:
    2154389
  • 财政年份:
    2022
  • 资助金额:
    $ 10.67万
  • 项目类别:
    Standard Grant
Transfer RNA sequencing and application to cancer research and clinics
将 RNA 测序和应用转移到癌症研究和临床
  • 批准号:
    10705187
  • 财政年份:
    2022
  • 资助金额:
    $ 10.67万
  • 项目类别:
Neurobehavioral Mechanisms of Higher-Order and Conceptual Fear and Avoidance Generalization in Anxiety Psychopathology
焦虑精神病理学中高阶和概念恐惧和回避泛化的神经行为机制
  • 批准号:
    10389973
  • 财政年份:
    2021
  • 资助金额:
    $ 10.67万
  • 项目类别:
Validation of Early Prognostic Data for Recovery Outcomes after Stroke for Future, Higher Yield Trials (VERIFY)
验证中风后恢复结果的早期预后数据,以进行未来更高产量的试验(VERIFY)
  • 批准号:
    10183797
  • 财政年份:
    2021
  • 资助金额:
    $ 10.67万
  • 项目类别:
Segmental amplification: the collateral effects of co-amplifying genes near a gene under selection for higher dosage
分段扩增:在选择更高剂量的情况下,在基因附近共扩增基因的附带效应
  • 批准号:
    10313853
  • 财政年份:
    2021
  • 资助金额:
    $ 10.67万
  • 项目类别:
Segmental amplification: the collateral effects of co-amplifying genes near a gene under selection for higher dosage
分段扩增:在选择更高剂量的情况下,在基因附近共扩增基因的附带效应
  • 批准号:
    10463583
  • 财政年份:
    2021
  • 资助金额:
    $ 10.67万
  • 项目类别:
Validation of Early Prognostic Data for Recovery Outcomes after Stroke for Future, Higher Yield Trials (VERIFY)
验证中风后恢复结果的早期预后数据,以进行未来更高产量的试验(VERIFY)
  • 批准号:
    10474279
  • 财政年份:
    2021
  • 资助金额:
    $ 10.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了