Factorization homology and the topology of manifolds
因式分解同调和流形拓扑
基本信息
- 批准号:1207758
- 负责人:
- 金额:$ 12.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Factorization homology is a homology theory for topological n-manifolds, constructed as a topological analogue of the homology of a factorization algebra in the algebro-geometric sense of Beilinson and Drinfeld. The coefficient system for such a theory is provided by a choice of n-disk algebra, a structure arising from n-fold loop spaces, Lie algebras, and certain quantum field theories, among other sources. This project aims to further develop this relatively new theory, to both bring new techniques to bear on previously studied invariants and to find new manifold invariants. A particular focus is 3-manifold topology, where one goal is to express quantum knot and 3-manifold invariants, such as Reshetikhin-Turaev invariants, Vassiliev knot invariants, and Chern-Simons invariants, in a uniform way in terms of factorization homology, and a second goal is to construct new knot homology theories via factorization homology. Another focus is the relation of factorization homology to the surgery classification of higher-dimensional topological manifolds.This project lies in topology, which studies abstract notions of space, motivated by mathematical physics - an intersection which had led to a great deal of work and cross-pollination. The problems are concerned with what possible global geometry may exist in a theoretical model for physical space or space-time and how this global geometry can be detected. It is interesting problem to try to describe the global geometry of such a candidate model for space-time by local observations. This project is one approach to this problem. Namely, if one were allowed to make local observations of some kind at different points throughout space-time, then compare them, how could one then reconstruct the global geometry from these compatible collections of observations? Factorization homology, the focus of this project, provides one avenue toward addressing this question.
分解同调是拓扑n流形的一种同调理论,在Beilinson和Drinfeld的代数-几何意义上构造为分解代数同调的拓扑类比。这种理论的系数系统是通过选择n盘代数、n折环空间、李代数和某些量子场论以及其他来源提供的。本项目旨在进一步发展这一相对较新的理论,为以前研究的不变量带来新的技术,并找到新的流形不变量。特别关注3流形拓扑,其中一个目标是在分解同调中以统一的方式表达量子结和3流形不变量,如Reshetikhin-Turaev不变量,Vassiliev结不变量和chen - simons不变量,第二个目标是通过分解同调构建新的结同调理论。另一个重点是高维拓扑流形的分解同调与手术分类的关系。这个项目属于拓扑学,它研究空间的抽象概念,受到数学物理学的启发——一个导致大量工作和交叉授粉的交叉点。这些问题涉及物理空间或时空的理论模型中可能存在的全局几何形状以及如何检测这种全局几何形状。试图用局部观测来描述这样一个候选时空模型的全局几何是一个有趣的问题。这个项目是解决这个问题的一种方法。也就是说,如果一个人被允许在整个时空的不同点进行某种局部观测,然后比较它们,那么一个人如何从这些兼容的观测集合中重建全局几何?这个项目的重点是分解同源性,它为解决这个问题提供了一条途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Francis其他文献
MP97-19 SURGICAL OUTCOMES IN THE MANAGEMENT OF HIGH RISK PROSTATE CANCER USING THE SURGICAL OUTCOMES FOR ADVANCED PROSTATE CANCER SCORE
- DOI:
10.1016/j.juro.2017.02.3063 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
John Francis;Simon Kim;Hui Zhu;Robert Abouassaly - 通讯作者:
Robert Abouassaly
Closer to home: A study of equity-focused pre-k access and enrollment policies in Chicago
更贴近本地:对芝加哥以公平为重点的学前教育入学机会和招生政策的研究
- DOI:
10.1016/j.ecresq.2024.12.008 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Maia C. Connors;Stacy B. Ehrlich Loewe;Amanda G. Stein;John Francis;Sarah Kabourek;John Q. Easton - 通讯作者:
John Q. Easton
SOME COMBINATORIAL GEOMETRY FOR CONVEX QUADRILATERALS
- DOI:
10.1023/a:1004803226093 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:0.500
- 作者:
John Francis - 通讯作者:
John Francis
Poincaré/Koszul Duality
庞加莱/科祖尔对偶
- DOI:
10.1007/s00220-019-03311-z - 发表时间:
2019 - 期刊:
- 影响因子:2.4
- 作者:
David Ayala;John Francis - 通讯作者:
John Francis
Focal motor weakness and recovery following chronic subdural hematoma evacuation.
慢性硬膜下血肿清除后的局灶性运动无力和恢复。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.1
- 作者:
P. Nisson;John Francis;Michelot Michel;Surya Patil;Hiroki Uchikawa;Anand Veeravagu;David Bonda - 通讯作者:
David Bonda
John Francis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Francis', 18)}}的其他基金
Collaborative Research: Factorization Homology, Deformation Theory, and Duality
合作研究:因式分解同调、变形理论和对偶性
- 批准号:
1812057 - 财政年份:2018
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
Collaborative Research: Factorization Homology and the Cobordism Hypothesis
合作研究:因式分解同调和协边假设
- 批准号:
1508040 - 财政年份:2015
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
SBIR Phase I: One Step Flash-Sintering of Multilayer Structures for SOFC Below 1000°C: a New Manufacturing Paradigm for Commercial Viability
SBIR 第一阶段:1000°C 以下 SOFC 多层结构的一步闪速烧结:商业可行性的新制造范式
- 批准号:
1315774 - 财政年份:2013
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
- 批准号:
2105501 - 财政年份:2021
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Factorization Homology and Low-Dimensional Topology
因式分解同调和低维拓扑
- 批准号:
2105031 - 财政年份:2021
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Instanton Homology in Low-Dimensional Topology
低维拓扑中的瞬时同调
- 批准号:
2005310 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
- 批准号:
2104309 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
- 批准号:
2005539 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Standard Grant
Homology theories in quantum topology
量子拓扑中的同调理论
- 批准号:
DE200100407 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Factorization homology and quantum topology
职业:因式分解同调和量子拓扑
- 批准号:
1945639 - 财政年份:2020
- 资助金额:
$ 12.94万 - 项目类别:
Continuing Grant














{{item.name}}会员




