Collaborative Research: Factorization Homology, Deformation Theory, and Duality
合作研究:因式分解同调、变形理论和对偶性
基本信息
- 批准号:1812057
- 负责人:
- 金额:$ 37.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops the geometric study of models of space-time, toward mathematical forms of fundamental concepts in particle physics. Two principal concepts from the theory of quantum fields are those of locality and duality. Locality generalizes the idea that there should not be so-called action at a distance in a complete quantum theory of nature. Duality occurs in two seemingly different quantum theories being fundamentally the same. The present project develops mathematical formulations of locality and duality in terms of a new theory of factorization homology. Factorization homology provides a mathematical means of articulating a physical theory on all of space-time in terms of physics in very small subregions, within which physics can be simplified in terms of combinatorics and higher-dimensional graph theory.This project develops the theory of factorization homology for variants of higher categories, and applications thereof to mathematical physics and differential topology. This theory can be thought of as the study of sheaves on moduli spaces of stratifications. One goal is to use factorization homology with adjoints to prove the cobordism hypothesis of Baez--Dolan and Lurie, which asserts that topological quantum field theories in the sense of Atiyah's axioms are uniquely determined by their value on a point. This would show that such a topological quantum field theory on space-time X comes from a sheaf on the moduli space of stratifications of X, and thus that the notion of locality can be understood in terms of the topology of such moduli spaces. A second goal is to show that this moduli space of stratifications of a manifold X satisfies an infinite-dimensional form of Poincar? duality. This would then give rise to a duality among topological physical theories on X, once expressed as sheaves on the aforementioned moduli space. This duality is a form of Koszul duality for topological physical theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目发展了时空模型的几何研究,朝着粒子物理基本概念的数学形式发展。量子场论中的两个主要概念是局域性和对偶性。局域性概括了在完整的自然量子理论中不应该存在所谓的远距离作用力的想法。对偶性发生在两个看似不同的量子理论中,它们本质上是相同的。本项目根据一种新的因式分解同调理论,发展了局部性和对偶性的数学公式。因式分解同调提供了一种在很小的子区域内以物理的形式表达关于所有时空的物理理论的数学方法,其中物理可以用组合学和高维图论来简化。这个项目发展了更高范畴的变体的因式分解同调理论,并将其应用于数学物理和微分拓扑学。这一理论可以看作是对分层模空间上的层的研究。一个目的是利用伴随的因式分解同调来证明Baez-Dolan和Lurie的协边假设,即Atiyah公理意义下的拓扑量子场论是由它们在一点上的值唯一确定的。这将表明,时空X上的这种拓扑量子场论来自于X的分层的模空间上的一捆,因此局域性的概念可以通过这种模空间的拓扑来理解。第二个目标是证明流形X的这个分层模空间满足Poincar?二元性。这将导致X上的拓扑物理理论之间的对偶性,一旦被表示为前述模空间上的层。这种二元性是拓扑物理理论的一种形式的Koszul二元性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Francis其他文献
MP97-19 SURGICAL OUTCOMES IN THE MANAGEMENT OF HIGH RISK PROSTATE CANCER USING THE SURGICAL OUTCOMES FOR ADVANCED PROSTATE CANCER SCORE
- DOI:
10.1016/j.juro.2017.02.3063 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
John Francis;Simon Kim;Hui Zhu;Robert Abouassaly - 通讯作者:
Robert Abouassaly
Closer to home: A study of equity-focused pre-k access and enrollment policies in Chicago
更贴近本地:对芝加哥以公平为重点的学前教育入学机会和招生政策的研究
- DOI:
10.1016/j.ecresq.2024.12.008 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Maia C. Connors;Stacy B. Ehrlich Loewe;Amanda G. Stein;John Francis;Sarah Kabourek;John Q. Easton - 通讯作者:
John Q. Easton
SOME COMBINATORIAL GEOMETRY FOR CONVEX QUADRILATERALS
- DOI:
10.1023/a:1004803226093 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:0.500
- 作者:
John Francis - 通讯作者:
John Francis
Poincaré/Koszul Duality
庞加莱/科祖尔对偶
- DOI:
10.1007/s00220-019-03311-z - 发表时间:
2019 - 期刊:
- 影响因子:2.4
- 作者:
David Ayala;John Francis - 通讯作者:
John Francis
Focal motor weakness and recovery following chronic subdural hematoma evacuation.
慢性硬膜下血肿清除后的局灶性运动无力和恢复。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.1
- 作者:
P. Nisson;John Francis;Michelot Michel;Surya Patil;Hiroki Uchikawa;Anand Veeravagu;David Bonda - 通讯作者:
David Bonda
John Francis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Francis', 18)}}的其他基金
Collaborative Research: Factorization Homology and the Cobordism Hypothesis
合作研究:因式分解同调和协边假设
- 批准号:
1508040 - 财政年份:2015
- 资助金额:
$ 37.67万 - 项目类别:
Continuing Grant
SBIR Phase I: One Step Flash-Sintering of Multilayer Structures for SOFC Below 1000°C: a New Manufacturing Paradigm for Commercial Viability
SBIR 第一阶段:1000°C 以下 SOFC 多层结构的一步闪速烧结:商业可行性的新制造范式
- 批准号:
1315774 - 财政年份:2013
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Factorization homology and the topology of manifolds
因式分解同调和流形拓扑
- 批准号:
1207758 - 财政年份:2012
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
2034479 - 财政年份:2020
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Collaborative Research: Factorization Homology, Deformation Theory, and Duality
合作研究:因式分解同调、变形理论和对偶性
- 批准号:
1812055 - 财政年份:2018
- 资助金额:
$ 37.67万 - 项目类别:
Continuing Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
1838042 - 财政年份:2018
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
BigData:IA:Collaborative Research: TIMES: A tensor factorization platform for spatio-temporal data
BigData:IA:协作研究:TIMES:时空数据张量分解平台
- 批准号:
1838200 - 财政年份:2018
- 资助金额:
$ 37.67万 - 项目类别:
Continuing Grant
Collaborative Research: Factorization homology and the cobordism hypothesis
合作研究:因式分解同调和协边假设
- 批准号:
1507704 - 财政年份:2015
- 资助金额:
$ 37.67万 - 项目类别:
Continuing Grant
Fundamental research for improving the practicality of communication-avoiding matrix factorization algorithms
提高免通信矩阵分解算法实用性的基础研究
- 批准号:
15K16000 - 财政年份:2015
- 资助金额:
$ 37.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Factorization Homology and the Cobordism Hypothesis
合作研究:因式分解同调和协边假设
- 批准号:
1508040 - 财政年份:2015
- 资助金额:
$ 37.67万 - 项目类别:
Continuing Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1417819 - 财政年份:2014
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1417697 - 财政年份:2014
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: High-throughput Phenotyping on Electronic Health Records using Multi-Tensor Factorization
SCH:INT:协作研究:使用多张量分解对电子健康记录进行高通量表型分析
- 批准号:
1418511 - 财政年份:2014
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant