Floer Homology and Low-Dimensional Topology

Florer 同调和低维拓扑

基本信息

  • 批准号:
    2005539
  • 负责人:
  • 金额:
    $ 10.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Low-dimensional topology is the study of spaces of dimensions three and four and their qualitative geometric properties. The classification of these spaces remains a fundamental problem today. The main theme of this project is to study topological properties of spaces using certain algebraic invariants, called Floer homology and Khovanov homology. These invariants have become central tools in modern topology and have connections to fields ranging from symplectic geometry to quantum physics to biology. In addition to its research component, the project includes plans for mentoring and outreach efforts, with a focus on increasing the accessibility of mathematics to groups underrepresented in the mathematical sciences. The project is devoted to studying three- and four-dimensional manifolds by further developing techniques in Floer homology and Khovanov homology. The first part of the project is to study homology cobordism and knot concordance, including constructing new concordance homomorphisms for knots in homology spheres. The second part of the project concerns properties of the monodromy of open book decompositions and Stein fillability of contact three-manifolds. The third part is to study properties of a link invariant called symplectic sl(n) homology and its connection to Khovanov-Rozansky homology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
低维拓扑学是对三维和四维空间及其定性几何性质的研究。这些空间的分类今天仍然是一个基本问题。该项目的主题是研究空间的拓扑性质,使用某些代数不变量,称为Floer同调和Khovanov同调。这些不变量已经成为现代拓扑学的核心工具,并与从辛几何到量子物理学再到生物学的各个领域都有联系。除了研究部分外,该项目还包括辅导和外联工作计划,重点是增加数学科学代表性不足的群体对数学的可及性。该项目致力于通过进一步发展Floer同调和Khovanov同调技术来研究三维和四维流形。第一部分是研究同调配边和纽结协调,包括构造同调球面上纽结的协调同态。该项目的第二部分关注的单值性的开卷分解和斯坦因填充接触三流形。第三部分是研究称为辛sl(n)同调的链接不变量的性质及其与Khovanov-Rozansky同调的联系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
More concordance homomorphisms from knot Floer homology
更多来自结弗洛尔同源性的索引同态
  • DOI:
    10.2140/gt.2021.25.275
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Dai, Irving;Hom, Jennifer;Stoffregen, Matthew;Truong, Linh
  • 通讯作者:
    Truong, Linh
Braids, fibered knots, and concordance questions
辫子、纤维结和索引问题
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hubbard, Diana;Kawamuro, Keiko;Kose, Feride Ceren;Martin, Gage;Plamenevskaya, Olga;Raoux, Katherine;Truong, Linh;Turner, Hannah
  • 通讯作者:
    Turner, Hannah
Annular Link Invariants from the Sarkar–Seed–Szabó Spectral Sequence
Sarkar–Seed–Szabó 谱序列的环形链接不变量
  • DOI:
    10.1307/mmj/20205862
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Truong, Linh;Zhang, Melissa
  • 通讯作者:
    Zhang, Melissa
A refinement of the Ozsváth-Szabó large integer surgery formula and knot concordance
Ozsváth-Szabó 大整数手术公式和结索引的改进
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linh Truong其他文献

Atg5 in microglia regulates sex-specific effects on postnatal neurogenesis in Alzheimer’s disease
小胶质细胞中的 Atg5 调节阿尔茨海默病中对产后神经发生的性别特异性影响
  • DOI:
    10.1038/s41514-025-00209-0
  • 发表时间:
    2025-03-16
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Ellen Walter;Gabrielle Angst;Justin Bollinger;Linh Truong;Elena Ware;Eric S. Wohleb;Yanbo Fan;Chenran Wang
  • 通讯作者:
    Chenran Wang
A novel multiplexed 11 locus HLA full gene amplification assay using next generation sequencing
  • DOI:
    10.1111/tan.13729
  • 发表时间:
    2019-10-24
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Linh Truong;Matern, Benedict;De Santis, Dianne
  • 通讯作者:
    De Santis, Dianne
Rapid high-resolution HLA genotyping by MinION Oxford nanopore sequencing for deceased donor organ allocation
  • DOI:
    10.1111/tan.13901
  • 发表时间:
    2020-04-26
  • 期刊:
  • 影响因子:
    8
  • 作者:
    De Santis, Dianne;Linh Truong;D'Orsogna, Lloyd
  • 通讯作者:
    D'Orsogna, Lloyd
Primary Cardiac Lymphoma: A Rare Cause of Pericardial Tamponade
  • DOI:
    10.1016/j.chest.2016.02.055
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Linh Truong;Ching-Fei Chang
  • 通讯作者:
    Ching-Fei Chang
Chrysanthemum-Like CoP Nanostructures on Vertical Graphene Nanohills as Versatile Electrocatalysts for Water Splitting
  • DOI:
    10.1021/acssuschemeng.8b06508
  • 发表时间:
    2019-03-04
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Linh Truong;Jerng, Sahng-Kyoon;Chun, Seung-Hyun
  • 通讯作者:
    Chun, Seung-Hyun

Linh Truong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linh Truong', 18)}}的其他基金

CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
  • 批准号:
    2104309
  • 财政年份:
    2020
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1606451
  • 财政年份:
    2016
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    2237131
  • 财政年份:
    2023
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
  • 批准号:
    2105501
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Floer Homology and Low-Dimensional Topology
Florer 同调和低维拓扑
  • 批准号:
    2104309
  • 财政年份:
    2020
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1949209
  • 财政年份:
    2019
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Applications of Gauge Theory and Floer Homology to Low-Dimensional Topology
规范理论和Floer同调在低维拓扑中的应用
  • 批准号:
    1811111
  • 财政年份:
    2018
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Heegaard Floer Homology and Low-Dimensional Topology
Heegaard Floer 同调和低维拓扑
  • 批准号:
    1811900
  • 财政年份:
    2018
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
  • 批准号:
    1806437
  • 财政年份:
    2017
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
  • 批准号:
    1707795
  • 财政年份:
    2017
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
  • 批准号:
    1707857
  • 财政年份:
    2017
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
  • 批准号:
    1552285
  • 财政年份:
    2016
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了