Material World Network: Understanding and Exploiting Mixed-Mode Ultra-Fast Optical-Electrical Behavior in Nanoscale Phase Change Materials
材料世界网络:理解和利用纳米级相变材料中的混合模式超快光电行为
基本信息
- 批准号:1210503
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThe objective of this Materials World Network project is to investigate comprehensively the material properties of phase change materials in mixed optical-electrical phase transitions. The underlying principle of memory storage in Ge-Sb-Te alloys is reversible crystalline to amorphous phase transitions that are associated with significant changes in optical reflectivity and electrical resistivity. Although the optical and electrical mechanisms have been independently investigated, there is no work done on the mixed-mode operation, i.e. switching the material optically while probing it electrically and vice-versa. This is however extremely important for a host of potentially game-changing applications ranging from optically gated ultra-fast transistors to non-von-Neumann arithmetic processing. This collaboration between PIs in US, UK and Germany will focus on investigating fundamental phase switching properties in mixed-mode, elucidating phase change mechanisms via dynamic optical probing of electrical phase transitions, and exploring the materials best suited for unconventional future arithmetic processors. The work will involve growth and characterization of new compositions of phase change nanowires, optical pulse induced switching which will be probed electrically, and detailed size- and composition-dependent studies of mixed mode operation in nanowires.NON-TECHNICAL SUMMARYThe von Neumann model of computing, which is currently used in computer architecture, utilizes designs with separate divisions for processing, logic and memory. Although this design has been highly successful for today's computers, there is clearly a need to go beyond von Neumann's model to keep up with the ever-increasing demand for faster computers with unprecedented capabilities. Combining arithmetic processing capabilities via optical excitation with electronic memory on a common platform is one possible solution to go beyond the conventional computer architecture and phase change materials are very promising in this regard. This Materials World Network project plans to study for the first time the optical-electrical mixed mode behaviour of phase change materials. Although the remarkable properties of these materials have made them commercially successful in memory devices, the fundamental material properties that govern their phase transitions between crystalline and amorphous states are still quite unknown. The project will provide fundamental and novel insights into how the electrical behaviour of these materials is influenced by optical excitation and vice versa. The research seeks to transfer best practises between PIs in three participating countries. The results of this work will greatly impact the development of non-von Neumann computing using arithmetic processing techniques that can revolutionize computing as we know it. Research and educational activities will be integrated by the involvement of undergraduates in the research program; incorporating new research results in the teaching module, and training high school teachers from the local school districts in three countries. In addition, international collaborative opportunities will give students opportunities to spend time in another laboratory and will provide a unique opportunity to pursue cutting edge research across national boundaries.This project is supported by the Electronic and Photonic Materials program and Office of Special Programs, Division of Materials Research.
本材料世界网络项目的目标是全面研究混合光电相变中相变材料的材料特性。Ge-Sb-Te合金中的存储器存储的基本原理是可逆的结晶到非晶相变,其与光学反射率和电阻率的显著变化相关联。 虽然已经独立地研究了光学和电学机制,但是没有对混合模式操作进行研究,即在电学探测的同时光学地切换材料,反之亦然。然而,这对于从光选通超快晶体管到非冯·诺依曼算术处理的许多潜在的改变游戏规则的应用来说是极其重要的。美国,英国和德国的PI之间的合作将专注于研究混合模式下的基本相位开关特性,通过动态光学探测电相变来阐明相变机制,并探索最适合于非传统未来算术处理器的材料。这项工作将涉及增长和表征的新组合物的相变纳米线,光脉冲感应开关,将被探测电,和详细的大小和成分依赖的研究混合模式操作nanowire.NON-TECHNICAL SUMMARYThe冯诺依曼模型的计算,这是目前使用的计算机架构,利用设计与单独的部门处理,逻辑和内存。虽然这种设计在今天的计算机上非常成功,但显然需要超越冯·诺依曼的模型,以跟上对具有前所未有的能力的更快计算机的不断增长的需求。通过光学激发将算术处理能力与电子存储器在公共平台上相结合是超越传统计算机架构的一种可能的解决方案,并且相变材料在这方面非常有前途。该材料世界网络项目计划首次研究相变材料的光电混合模式行为。虽然这些材料的显着性能使它们在存储器件中取得了商业上的成功,但控制它们在晶态和非晶态之间的相变的基本材料性能仍然是未知的。该项目将提供基本的和新颖的见解,这些材料的电学行为是如何受到光激发的影响,反之亦然。该研究旨在在三个参与国家的PI之间转移最好的业务。这项工作的结果将极大地影响非冯·诺依曼计算的发展,使用算术处理技术,可以彻底改变我们所知道的计算。研究和教育活动将通过本科生参与研究计划,将新的研究成果纳入教学模块,并培训来自三个国家当地学区的高中教师。此外,国际合作的机会将使学生有机会花时间在另一个实验室,并将提供一个独特的机会,追求跨越国界的前沿研究。该项目是由电子和光子材料计划和特别计划办公室,材料研究部的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritesh Agarwal其他文献
Guidelines for management of asthma at primary and secondary levels of health care in India (2005).
印度初级和二级卫生保健哮喘管理指南(2005 年)。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. K. Jindal;Diwaker Gupta;Ashish Aggarwal;Ritesh Agarwal - 通讯作者:
Ritesh Agarwal
An unusual association between Mycobacterium tuberculosis and Aspergillus fumigatus.
结核分枝杆菌和烟曲霉之间存在不寻常的关联。
- DOI:
10.4081/monaldi.2008.409 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ritesh Agarwal;Navneet Singh;A. Aggarwal - 通讯作者:
A. Aggarwal
How long does it take for tuberculosis to cause secondary amyloidosis?
结核病需要多长时间才能引起继发性淀粉样变性?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:8
- 作者:
P. Malhotra;Ritesh Agarwal;A. Awasthi;S. K. Jindal;Radhika Srinivasan - 通讯作者:
Radhika Srinivasan
Estimating the clinically important change for Saint George’s Respiratory Questionnaire in allergic bronchopulmonary aspergillosis
- DOI:
10.1016/j.jaip.2022.05.029 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Ritesh Agarwal;Inderpaul Singh Sehgal;Valliappan Muthu;Sahajal Dhooria;Kuruswamy Thurai Prasad;Ashutosh Nath Aggarwal;Arunaloke Chakrabarti - 通讯作者:
Arunaloke Chakrabarti
ETIOLOGY AND OUTCOMES OF ARDS IN THE ELDERLY POPULATION IN A RESPIRATORY ICU IN NORTH INDIA
- DOI:
10.1016/j.chest.2019.08.929 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Ashutosh Aggarwal;Ritesh Agarwal;Sahajal Dhooria;Kuruswamy Prasad; valliappan muthu - 通讯作者:
valliappan muthu
Ritesh Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritesh Agarwal', 18)}}的其他基金
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328743 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323468 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics
QII-TAQS:通过对称驱动的 Valley Opto electronics 的量子电路
- 批准号:
1936276 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Designing new quantum topological nanomaterials via controlled ion-exchange reactions
通过受控离子交换反应设计新型量子拓扑纳米材料
- 批准号:
1808202 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Structural and Chemical Changes due to Electrical Stress in Phase-Change Nanowires: An In-Situ Electron Microscopy Study
相变纳米线中电应力引起的结构和化学变化:原位电子显微镜研究
- 批准号:
1505127 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Fundamental Investigation of Charge Transport and Memory Switching in Amorphized Phase-Change Nanowires
非晶相变纳米线中电荷传输和存储开关的基础研究
- 批准号:
1002164 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Nanoscale Crystalline to Amorphous Phase Transition Studies in Nanowires: Controlled Synthesis, Characterization, Memory Switching Devices and Size-Dependent Properties
纳米线中纳米级晶体到非晶态的相变研究:受控合成、表征、存储开关器件和尺寸相关特性
- 批准号:
0706381 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
CAREER: Semiconductor Nanowire Quantum Heterostructures: Growth, Characterization, and Quantum Confined Properties and Photonics at the Nanoscale
职业:半导体纳米线量子异质结构:纳米尺度的生长、表征、量子限制特性和光子学
- 批准号:
0644737 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
NER: Nanowire Spectrophotometer for Lab-on-a-Chip Chemical Analysis
NER:用于芯片实验室化学分析的纳米线分光光度计
- 批准号:
0609083 - 财政年份:2006
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Evaluating Real-world Diabetes Prevention Programs in a Multi-campus University System and a Three-state Regional Health Network
评估多校区大学系统和三州区域卫生网络中的现实世界糖尿病预防计划
- 批准号:
10662416 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Evaluating Real-world Diabetes Prevention Programs in a Multi-campus University System and a Three-state Regional Health Network
评估多校区大学系统和三州区域卫生网络中的现实世界糖尿病预防计划
- 批准号:
10554970 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Understanding cascading cellular protein responses following multi-protein stimuli using network modeling and real-world evidence
使用网络模型和现实世界证据了解多蛋白刺激后的级联细胞蛋白反应
- 批准号:
10685328 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Digitization PEN: Adding a world-class flea collection to the Terrestrial Parasite Tracker network
数字化 PEN:将世界级的跳蚤收藏添加到陆地寄生虫追踪器网络中
- 批准号:
2101926 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Neural Network based Graph Learning: Model Evolution and Real-World Application
基于神经网络的图学习:模型演化和实际应用
- 批准号:
21K12042 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canadian COVID-19 Emergency Department Rapid Response Network: Determining Real-World Vaccine Effectiveness and Duration of Protection Against Variants of Concern
加拿大 COVID-19 急诊部快速反应网络:确定现实世界疫苗的有效性和针对关注变体的保护持续时间
- 批准号:
448977 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Operating Grants
Applying, developing and evaluating Bayesian Network structure learning algorithms to complex real-world datasets .
将贝叶斯网络结构学习算法应用、开发和评估到复杂的现实世界数据集。
- 批准号:
2441682 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Studentship
SBIR Phase II (COVID-19): Improved 5G Network Performance and Demand Prediction in a Virtually Connected World
SBIR 第二阶段 (COVID-19):虚拟连接世界中改进的 5G 网络性能和需求预测
- 批准号:
2025956 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Cooperative Agreement
The Nurture Network: Promoting Young People's Mental Health in a Digital World
培育网络:在数字世界中促进年轻人的心理健康
- 批准号:
ES/S004467/2 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Connection Greek and Mesopotamian World: Western Expansion of the Anatolian Trading Network in the First Half of the 2nd Mill. BCE
连接希腊和美索不达米亚世界:第二工厂上半年安纳托利亚贸易网络的西部扩张。
- 批准号:
19H01351 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)