Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
基本信息
- 批准号:2323468
- 负责人:
- 金额:$ 106.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Atomically thin two-dimensional (2D) materials can host intriguing quantum properties not found in their bulk counterparts. Furthermore, stacking 2D materials with control over the twist angles between adjacent layers provides a versatile way to obtain novel quantum materials with unprecedented properties. Such “twistronic” materials can have applications in electronics, photonics and quantum information science and technologies. However, with the new degrees of freedom, the materials design parameter space becomes exceedingly large, posing a significant challenge to predictably design and precisely make materials to enable such unique properties. In this DMREF project, the collaborative team from University of Pennsylvania, University of Wisconsin-Madison, and Northeastern University will use computer aided deep learning models and theoretical tools to predict designer twistronic materials prepared in specific states and guide the unique self-assembled crystal growth to engineer twist angles in different 2D materials. The team will perform property measurements to characterize these systems and also extend the ideas to quantum photonics to assemble on-chip devices. Results from synthesis, characterization and device measurements will be fed back to the theoretical models for establishing a self-consistent and tightly integrated research for further discovery of new designer twistronic materials with precisely controlled responses that can enable a new paradigm for quantum materials research with applications in computing, communications, imaging and sensing. Interdisciplinary research activities will be integrated with educational and outreach initiatives by involving students at all levels from diverse backgrounds in the collaborative research project with emphasis on quantum materials and photonics. Technical Description: Modern quantum materials are typically designed by engineering symmetries combined with strong spin-orbit coupling at the atomic and lattice length scales. In two-dimensional (2D) materials with chiral symmetry complemented by many-body interactions such as interlayer coupling, controlling the interlayer twist angle offers a promising strategy to achieve novel quantum properties such as flat bands, topological phases, and large nonlinear optical responses. However, two major challenges impede the progress in “twistronic” materials: 1) the dramatic increase in the degrees of freedom of the systems makes it prohibitively difficult to predict the material compositions, crystal phases and interlayer twists needed to achieve a particular quantum phase; and 2) the current material fabrication method consisting of exfoliating and reassembling 2D material layers with manual control over the interlayer twist angles is a laborious process with low yields. In this DMREF project, a highly interdisciplinary team will break the fundamental limitation of designing twistronic materials via deep learning-based symmetry and topological engineering of materials and metamaterials. Starting from a quantum paradigm, the atomic scale symmetry and topology in 2D materials will be optimized for targeted chiral responses. Guided by theory, multilayer twisted 2D materials will be synthesized with rational control over interlayer twist angles, compositions, and crystal phases to realize novel and predictable quantum properties. New knowledge will be generated to enable the rational design of quantum twistronic materials with highly predictive power to demonstrate novel chiral optoelectronic responses, which will also be extended to quantum photonic systems. These advances can enable the next generation of electronics and optical devices such as on-chip coherent chiral emitters, entangled photon emission and detection with precisely controlled responses. The interdisciplinary project will provide an excellent educational opportunity for training graduate, undergraduate and K-12 students on the important concepts of geometry, crystal structures and quantum physics with an emphasis on increasing the participation of underrepresented groups. Funding for the award is from the Mathematical and Physical Sciences (MPS) Divisions of Materials Research (DMR) and Chemistry (CHE) through the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:原子薄的二维(2D)材料可以承载其块状材料中没有的有趣量子特性。此外,通过控制相邻层之间的扭转角来堆叠二维材料,为获得具有前所未有性能的新型量子材料提供了一种通用的方法。这种“双旋电子”材料可以应用于电子学、光子学和量子信息科学与技术。然而,在新的自由度下,材料的设计参数空间变得非常大,这对材料的可预测性设计和精确制造提出了重大挑战,以实现这种独特的性能。在这个DMREF项目中,来自宾夕法尼亚大学、威斯康星大学麦迪逊分校和东北大学的合作团队将使用计算机辅助深度学习模型和理论工具来预测在特定状态下制备的设计师双涡旋材料,并指导独特的自组装晶体生长来设计不同二维材料的扭曲角度。该团队将执行性能测量来表征这些系统,并将想法扩展到量子光子学,以组装芯片上的设备。合成、表征和器件测量的结果将反馈到理论模型中,以建立自一致和紧密集成的研究,进一步发现具有精确控制响应的新型设计双创材料,这可以为量子材料研究提供新的范例,并应用于计算、通信、成像和传感。跨学科研究活动将与教育和推广活动相结合,让来自不同背景的各级学生参与合作研究项目,重点是量子材料和光子学。技术描述:现代量子材料通常是通过在原子和晶格长度尺度上结合强自旋轨道耦合的工程对称性来设计的。在具有手性对称性的二维(2D)材料中,通过层间耦合等多体相互作用,控制层间扭转角提供了一种有前途的策略来实现新的量子特性,如平带、拓扑相和大非线性光学响应。然而,两大挑战阻碍了“双旋电子”材料的进展:1)系统自由度的急剧增加使得预测材料成分、晶体相和实现特定量子相所需的层间扭曲变得非常困难;2)目前的材料制造方法包括剥离和重组二维材料层,并手动控制层间扭转角,这是一个费力的过程,产量低。在这个DMREF项目中,一个高度跨学科的团队将通过基于深度学习的材料和超材料的对称性和拓扑工程来打破设计涡旋材料的基本限制。从量子范式出发,二维材料的原子尺度对称性和拓扑结构将针对目标手性响应进行优化。在理论指导下,多层扭曲二维材料将通过合理控制层间扭曲角、成分和晶体相来实现新颖和可预测的量子特性。将产生新的知识,使具有高预测能力的量子扭转电子材料的合理设计能够展示新的手性光电响应,这也将扩展到量子光子系统。这些进步可以实现下一代电子和光学器件,如片上相干手性发射器,纠缠光子发射和具有精确控制响应的检测。这个跨学科项目将为研究生、本科生和K-12学生提供一个很好的教育机会,让他们了解几何、晶体结构和量子物理的重要概念,重点是增加代表性不足群体的参与。该奖项的资金来自数学和物理科学(MPS)材料研究(DMR)和化学(CHE)部门,通过设计材料来革新和工程我们的未来(DMREF)计划。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritesh Agarwal其他文献
Guidelines for management of asthma at primary and secondary levels of health care in India (2005).
印度初级和二级卫生保健哮喘管理指南(2005 年)。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. K. Jindal;Diwaker Gupta;Ashish Aggarwal;Ritesh Agarwal - 通讯作者:
Ritesh Agarwal
An unusual association between Mycobacterium tuberculosis and Aspergillus fumigatus.
结核分枝杆菌和烟曲霉之间存在不寻常的关联。
- DOI:
10.4081/monaldi.2008.409 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ritesh Agarwal;Navneet Singh;A. Aggarwal - 通讯作者:
A. Aggarwal
How long does it take for tuberculosis to cause secondary amyloidosis?
结核病需要多长时间才能引起继发性淀粉样变性?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:8
- 作者:
P. Malhotra;Ritesh Agarwal;A. Awasthi;S. K. Jindal;Radhika Srinivasan - 通讯作者:
Radhika Srinivasan
ETIOLOGY AND OUTCOMES OF ARDS IN THE ELDERLY POPULATION IN A RESPIRATORY ICU IN NORTH INDIA
- DOI:
10.1016/j.chest.2019.08.929 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Ashutosh Aggarwal;Ritesh Agarwal;Sahajal Dhooria;Kuruswamy Prasad; valliappan muthu - 通讯作者:
valliappan muthu
Estimating the clinically important change for Saint George’s Respiratory Questionnaire in allergic bronchopulmonary aspergillosis
- DOI:
10.1016/j.jaip.2022.05.029 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Ritesh Agarwal;Inderpaul Singh Sehgal;Valliappan Muthu;Sahajal Dhooria;Kuruswamy Thurai Prasad;Ashutosh Nath Aggarwal;Arunaloke Chakrabarti - 通讯作者:
Arunaloke Chakrabarti
Ritesh Agarwal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritesh Agarwal', 18)}}的其他基金
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328743 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
QII-TAQS: Quantum Circuits Through Symmetry-Driven Valley Optoelectronics
QII-TAQS:通过对称驱动的 Valley Opto electronics 的量子电路
- 批准号:
1936276 - 财政年份:2019
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Designing new quantum topological nanomaterials via controlled ion-exchange reactions
通过受控离子交换反应设计新型量子拓扑纳米材料
- 批准号:
1808202 - 财政年份:2018
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Structural and Chemical Changes due to Electrical Stress in Phase-Change Nanowires: An In-Situ Electron Microscopy Study
相变纳米线中电应力引起的结构和化学变化:原位电子显微镜研究
- 批准号:
1505127 - 财政年份:2015
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
Material World Network: Understanding and Exploiting Mixed-Mode Ultra-Fast Optical-Electrical Behavior in Nanoscale Phase Change Materials
材料世界网络:理解和利用纳米级相变材料中的混合模式超快光电行为
- 批准号:
1210503 - 财政年份:2012
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
Fundamental Investigation of Charge Transport and Memory Switching in Amorphized Phase-Change Nanowires
非晶相变纳米线中电荷传输和存储开关的基础研究
- 批准号:
1002164 - 财政年份:2010
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
Nanoscale Crystalline to Amorphous Phase Transition Studies in Nanowires: Controlled Synthesis, Characterization, Memory Switching Devices and Size-Dependent Properties
纳米线中纳米级晶体到非晶态的相变研究:受控合成、表征、存储开关器件和尺寸相关特性
- 批准号:
0706381 - 财政年份:2007
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
CAREER: Semiconductor Nanowire Quantum Heterostructures: Growth, Characterization, and Quantum Confined Properties and Photonics at the Nanoscale
职业:半导体纳米线量子异质结构:纳米尺度的生长、表征、量子限制特性和光子学
- 批准号:
0644737 - 财政年份:2007
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
NER: Nanowire Spectrophotometer for Lab-on-a-Chip Chemical Analysis
NER:用于芯片实验室化学分析的纳米线分光光度计
- 批准号:
0609083 - 财政年份:2006
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 106.5万 - 项目类别:
Standard Grant