PIF: Quantum Monte Carlo Methods for Non-Equilibrium Dynamics of Interacting Quantum Many-Body Systems
PIF:相互作用量子多体系统非平衡动力学的量子蒙特卡罗方法
基本信息
- 批准号:1211284
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, novel computational and theoretical approaches to the dynamics of quantum many-body systems are investigated. The central idea is that quantum quenches using essentially arbitrary evolution protocols in imaginary time can be carried out numerically using modified versions of existing quantum Monte Carlo (QMC) algorithms. We develop two algorithms: (i) In non-equilibrium QMC (NEQMC) simulations, the final state of a system after a Hamiltonian evolution in imaginary time is computed. (ii) In the quasi-adiabatic QMC (QAQMC) method, expectation values along a full time-path are obtained simultaneously, using a product of a large number of evolving Hamiltonians (instead of the standard exponential time evolution operator). Key to the utility of these approaches are theoretical insights into how the imaginary-time information is related to real-times dynamics. Specifically, scaling behaviors as a function of a quench velocity (or a generalized velocity in the case of nonlinear protocols) in the neighborhood of a quantum-critical point are investigated. Susceptibilities characterizing non-equilibrium dynamics are also obtained, including the geometric tensor characterizing the state space. These theoretical ideas are developed in parallel with the QMC algorithms. Several applications to test the methods and demonstrate their uses are considered, including quantum phase transitions in transverse-field Ising models and Heisenberg-type spin models, as well as quantum spin glasses and other disordered systems. Quantum annealing protocols of interest in the context of quantum computations and other applications of adiabatic or quasi-adiabatic evolution of quantum systems are also investigated. In addition, some of the ideas developed within the context of quantum systems are also applied to classical many-body dynamics, e.g., to obtain improved ways of computing the dynamic critical exponent.One of the greatest challenges of contemporary theoretical physics is how to compute (predict) the dynamical evolution of systems of a large (macroscopic) number of interacting microscopical particles. Examples of such systems include the electrons in a solid or confined "clouds" of atoms cooled to ultra-cold temperature. These particles obey the laws of quantum mechanics, which makes computations of their behaviors extremely difficult, especially as regards their evolution in time (quantum dynamics). Even with today's supercomputers, there are no generally applicable numerical algorithms useful for solving this class of problems within reasonable time (the computation time typically scaling exponentially with the number of particles in the system). This project is centered around an idea to partially circumvent these problems for some classes of important quantum systems. Using a mathematical trick of "rotating" the time dimension in the complex plane to the imaginary-time axis, certain well known simulation algorithms for quantum systems in equilibrium can be modified to solve the evolution as a function of imaginary time. In parallel with the development of these computational tools, related theoretical work is conducted in order to obtain precise relationships between real and imaginary time dynamics. The systems under investigation are of interest, e.g., in the fields of quantum magnetism (magnetism at the electronic scale) and ultra-cold atoms, and it can be expected that the results can have impact also broadly beyond these systems (as the quantum dynamics problem is of very general interest in physics), e.g., in quantum computation (currently researched computers based on quantum-mechanical principles). The graduate students involved in the project receive training in cutting-edge scientific computation and theoretical physics.
在这个项目中,我们研究了量子多体系统动力学的新的计算和理论方法。其核心思想是,在虚时间内使用基本上任意演化协议的量子猝灭可以使用现有量子蒙特卡罗(QMC)算法的修改版本进行数值计算。我们提出了两个算法:(I)在非平衡量子力学(NEQMC)模拟中,计算系统在虚时间哈密顿演化后的最终状态。(Ii)在准绝热QMC(QAQMC)方法中,使用大量演化哈密顿量的乘积(而不是标准的指数时间演化算子)同时获得沿整个时间路径的期望值。这些方法的实用性的关键是对想象的时间信息如何与实时动态相关的理论洞察。具体地,研究了在量子临界点附近作为失超速度(或在非线性协议情况下的广义速度)的函数的标度行为。还得到了表征非平衡动力学的极化率,包括表征状态空间的几何张量。这些理论思想是与QMC算法并行发展的。我们考虑了一些应用来测试这些方法并展示它们的用途,包括横场伊辛模型和海森堡型自旋模型中的量子相变,以及量子自旋玻璃和其他无序系统。在量子计算和量子系统的绝热或准绝热演化的其他应用的背景下,我们也研究了感兴趣的量子退火协议。此外,在量子系统背景下发展起来的一些想法也被应用到经典的多体动力学中,例如,获得计算动力学临界指数的改进方法。当代理论物理的最大挑战之一是如何计算(预测)大量(宏观)相互作用的微观粒子系统的动力学演化。这类系统的例子包括固体中的电子或冷却到超低温的受限原子云中的电子。这些粒子遵守量子力学定律,这使得计算它们的行为极其困难,特别是关于它们在时间上的演化(量子动力学)。即使在今天的超级计算机上,也没有普遍适用的数值算法可以在合理的时间内解决这类问题(计算时间通常随系统中粒子的数量呈指数级增长)。这个项目围绕着一个想法,即部分绕过某些类别的重要量子系统的这些问题。利用将复平面中的时间维度旋转到虚时间轴的数学技巧,可以修改某些著名的平衡量子系统的模拟算法,以解决作为虚时间函数的演化问题。在开发这些计算工具的同时,还进行了相关的理论工作,以获得真实和虚构的时间动力学之间的精确关系。正在研究的系统是令人感兴趣的,例如,在量子磁学(电子尺度的磁性)和超冷原子领域,可以预期,结果也可能产生广泛的影响,超出这些系统(因为量子动力学问题在物理学中非常普遍的兴趣),例如,在量子计算(当前基于量子力学原理研究的计算机)。参与该项目的研究生接受了尖端科学计算和理论物理方面的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anders Sandvik其他文献
Critical Level Crossings and Gapless Spin Liquid in the Square-Lattice Spin-1/2 J1 − J2 Heisenberg Antiferromagnet
- DOI:
https://doi.org/10.1103/PhysRevLett.121.107202 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
汪玲;Anders Sandvik - 通讯作者:
Anders Sandvik
Quantum Phase Transitions from Neel State to VBS State
从 Neel 态到 VBS 态的量子相变
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Kanji Harada;Jie Lou;Anders Sandvik;Matthias Troyer;Naoki Kawashima - 通讯作者:
Naoki Kawashima
Anders Sandvik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anders Sandvik', 18)}}的其他基金
Simulation Studies of Ground State Phases and Criticality in Correlated Quantum Matter
相关量子物质的基态相和临界性的模拟研究
- 批准号:
1710170 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Simulation studies of ground state phases and criticality in correlated quantum matter
相关量子物质中基态相和临界性的模拟研究
- 批准号:
1410126 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Simulation studies of ground state phases and criticality in correlated quantum matter
相关量子物质中基态相和临界性的模拟研究
- 批准号:
1104708 - 财政年份:2011
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Simulation Studies of Ground State Phases and Criticality in Correlated Quantum Matter
相关量子物质的基态相和临界性的模拟研究
- 批准号:
0803510 - 财政年份:2008
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Simulation Studies of Ground State Phases and Criticality in Correlated Quantum Matter
相关量子物质的基态相和临界性的模拟研究
- 批准号:
0513930 - 财政年份:2005
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
- 批准号:
2316007 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
RUI New Generation of AI-Augmented Quantum Monte Carlo Libraries to Guide the Search for Exotic Superfluid Phases in Cold Atoms
RUI 新一代人工智能增强量子蒙特卡罗库指导冷原子中奇异超流体相的搜索
- 批准号:
2207048 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Quantum Monte Carlo studies of periodic many-body systems
周期性多体系统的量子蒙特卡罗研究
- 批准号:
2731113 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
Study of novel quantum properties in low dimensional He systems using the Quantum Monte Carlo method.
使用量子蒙特卡罗方法研究低维 He 系统中的新颖量子特性。
- 批准号:
21K03451 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of computational positron spectroscopy based on quantum Monte Carlo method
基于量子蒙特卡罗方法的计算正电子能谱研究进展
- 批准号:
21K04983 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accurate Quantum Chemistry of Protein Active Sites using Auxiliary-Field Quantum Monte Carlo
使用辅助场量子蒙特卡罗对蛋白质活性位点进行精确的量子化学分析
- 批准号:
9911383 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Accurate Quantum Chemistry of Protein Active Sites using Auxiliary-Field Quantum Monte Carlo
使用辅助场量子蒙特卡罗对蛋白质活性位点进行精确的量子化学分析
- 批准号:
10084166 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
- 批准号:
2038030 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
- 批准号:
2037984 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Machine Learning Applications for Quantum Monte Carlo
量子蒙特卡罗的机器学习应用
- 批准号:
544955-2019 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's