DynSyst_Special_Topics: Correlations and Stochastic Dynamics in Suspensions of Swimming Microorganisms
DynSyst_Special_Topics:游动微生物悬浮液中的相关性和随机动力学
基本信息
- 批准号:1211665
- 负责人:
- 金额:$ 36.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The supported work will develop new theoretical and computational approaches to describing the effective coarse-grained stochastic dynamics of noisy, nonlinearly interacting agents in a physically well-grounded model system: suspensions of swimming microorganisms (microswimmers). The dynamics exhibit highly disordered behavior, with long-ranged statistical correlations observed in direct numerical simulations. Yet most theoretical work has been based on deterministic methods such as mean field theories for the effective behavior. The primary goal of the supported work is to incorporate the role of noise in the dynamics into a systematic statistical theory for the effective dynamics of the interacting microswimmers. Two central issues to be addressed are: (1) a rational framework for parameterizing the noise of a sampled swimmer in a self-consistent statistical field theory, and (2) the incorporation of correlations between microswimmers in an effective statistical field theory.Many complex systems use interactions or communication to produce an emergent behavior of the group. A key goal is to better understand how those interactions can change the effective dynamics of the individuals, and thereby the group. Examples include wide varieties of swarms of insects, colonies of bacteria, flocks of birds, herds of animals, as well as engineered systems such as autonomous robotic devices which communicate information and status to each other in pursuit of a goal or target. These applications involve not only the interaction of a large number of agents, but also typically noise in the environment, motion, and/or communication. This grant supports research on a model system of suspensions of swimming microorganisms (microswimmers) which has the virtue of incorporating these central issues in a system where the governing dynamics have a clearly defined physical basis. This facilitates the development of the mathematical technology regarding the effective behavior of a group of nonlinearly interacting agents with noisy features. The research is also coupled with efforts on education and outreach. The supported graduate student will be co-mentored by the interdisciplinary team of PIs, exposing him or her to advanced mathematical methods, high quality computational simulations, and practical engineering applications. This project is being used in efforts to encourage under-represented groups through the PREFACE program at Rensselaer.
支持的工作将开发新的理论和计算方法来描述一个物理基础良好的模型系统中有噪声的、非线性相互作用的有效粗粒度随机动力学:游泳微生物(微游泳者)的悬浮液。动力学表现出高度无序的行为,在直接数值模拟中观察到长期的统计相关性。然而,大多数理论工作都是基于确定性方法,如有效行为的平均场理论。支持工作的主要目标是将噪声在动力学中的作用纳入一个系统的统计理论,用于相互作用的微游泳者的有效动力学。需要解决的两个核心问题是:(1)在自洽统计场理论中参数化采样游泳者噪声的合理框架;(2)在有效的统计场理论中纳入微游泳者之间的相关性。许多复杂的系统使用交互或通信来产生群体的紧急行为。一个关键的目标是更好地理解这些相互作用如何改变个人的有效动态,从而改变群体。例子包括各种各样的昆虫群、细菌群、鸟群、动物群,以及工程系统,如自主机器人设备,它们在追求一个目标或目标时相互传递信息和状态。这些应用程序不仅涉及大量代理的交互,而且还涉及环境、运动和/或通信中的典型噪声。该基金支持对游动微生物(微游泳者)悬浮液模型系统的研究,该模型系统的优点是将这些核心问题纳入一个控制动力学具有明确定义的物理基础的系统中。这促进了关于一组具有噪声特征的非线性相互作用主体的有效行为的数学技术的发展。这项研究还与教育和推广工作相结合。支持的研究生将由跨学科的pi团队共同指导,让他或她接触先进的数学方法,高质量的计算模拟和实际的工程应用。这个项目正在通过伦斯勒大学的前言项目来鼓励代表性不足的群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kramer其他文献
Sodium excretion in goldblatt hypertension
- DOI:
10.1007/bf00588579 - 发表时间:
1972-01-01 - 期刊:
- 影响因子:2.900
- 作者:
Peter Kramer;Bruno Ochwadt - 通讯作者:
Bruno Ochwadt
Visual attentional capture predicts belief in a meaningful world
视觉注意力捕获预测对有意义的世界的信念
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.6
- 作者:
P. Bressan;Peter Kramer;M. Germani - 通讯作者:
M. Germani
How people update their beliefs about climate change: An experimental investigation of the optimistic update bias and how to reduce it
人们如何更新他们对气候变化的信念:对乐观更新偏差以及如何减少它的实验调查
- DOI:
10.1111/pops.12920 - 发表时间:
2023 - 期刊:
- 影响因子:4.6
- 作者:
T. Kube;M. Wullenkord;L. Rozenkrantz;Peter Kramer;Sophia Lieb;Claudia Menzel - 通讯作者:
Claudia Menzel
Ignoring color in transparency perception
忽略透明度感知中的颜色
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0.3
- 作者:
Peter Kramer;P. Bressan - 通讯作者:
P. Bressan
Gating of remote effects on lightness.
控制对亮度的远程影响。
- DOI:
10.1167/8.2.16 - 发表时间:
2008 - 期刊:
- 影响因子:1.8
- 作者:
P. Bressan;Peter Kramer - 通讯作者:
Peter Kramer
Peter Kramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kramer', 18)}}的其他基金
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
- 批准号:
2153374 - 财政年份:2022
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Application of Multi-Scale and Stochastic Methods to Mesoscale Eddy Parameterization Schemes
合作研究:CMG——多尺度随机方法在中尺度涡流参数化方案中的应用
- 批准号:
0620956 - 财政年份:2006
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
CAREER: Stochastic Dynamical Models in Microbiology
职业:微生物学中的随机动力学模型
- 批准号:
0449717 - 财政年份:2005
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
Random Models for Turbulent Fluid Systems
湍流流体系统的随机模型
- 批准号:
0207242 - 财政年份:2002
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705973 - 财政年份:1997
- 资助金额:
$ 36.17万 - 项目类别:
Fellowship Award
The High Speed Centrifuge in Biochemistry and Biology
生物化学和生物学中的高速离心机
- 批准号:
9250848 - 财政年份:1992
- 资助金额:
$ 36.17万 - 项目类别:
Standard Grant
相似海外基金
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 36.17万 - 项目类别:
Continuing Grant
Q-CALC (Quantum Contextual Artificial intelligence for Long-range Correlations)
Q-CALC(用于远程关联的量子上下文人工智能)
- 批准号:
10085547 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Small Business Research Initiative
Exploration of spin topology, emergent inductance, and electron correlations in transition metal oxides
过渡金属氧化物中自旋拓扑、涌现电感和电子相关性的探索
- 批准号:
22KF0124 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Exploring quantum correlations in superconducting terahertz emitter
探索超导太赫兹发射器中的量子相关性
- 批准号:
23K17747 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Emergent spacetime based on quantum correlations and measurements
基于量子相关性和测量的涌现时空
- 批准号:
23KJ1154 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Identification of the origins of inherited retinal diseases and clarification of genotype-phenotype correlations based on three major ethnic groups worldwide utilizing artificial intelligence.
利用人工智能,基于全球三个主要种族群体,识别遗传性视网膜疾病的起源并阐明基因型-表型相关性。
- 批准号:
22KJ2665 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Various aspects of correlations in the quark-gluon plasma
夸克-胶子等离子体中相关性的各个方面
- 批准号:
23K03386 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring genotype-phenotype correlations in Sox10 mutations
探索 Sox10 突变的基因型-表型相关性
- 批准号:
2892101 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Studentship
Diagnosis and Genotype-Phenotype Correlations in Early Life Epilepsy and CDKL5 Disorder
早期癫痫和 CDKL5 疾病的诊断和基因型-表型相关性
- 批准号:
10758725 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Exploring genotype-phenotype correlations in Sox10 mutations
探索 Sox10 突变的基因型-表型相关性
- 批准号:
2885791 - 财政年份:2023
- 资助金额:
$ 36.17万 - 项目类别:
Studentship