CAREER: Stochastic Dynamical Models in Microbiology
职业:微生物学中的随机动力学模型
基本信息
- 批准号:0449717
- 负责人:
- 金额:$ 41.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research aspect of this CAREER project concerns the application ofstochastic modeling and asymptotic techniques toward two problems inmicrobiology which can be cast within the framework of stochasticmotion in random environments. First, a stochastic model will bedeveloped to represent how water molecules interact with the surfaceof a protein. Water plays a crucial role in the functioning ofproteins, and must be accounted for in molecular dynamics simulationswhich attempt to predict the dynamics of a protein molecule. Thedetailed inclusion of water molecules in such simulations is howeververy costly and limits the practical scope of these simulations. Thestochastic model for the water-protein interaction to bedeveloped in the research is intended toprovide a more efficient representation of the effects of water andthereby accelerate protein dynamics calculations. It will consist ofa lattice model parameterization of the chemistry and geometry of theprotein surface and a generalized diffusion process for the watermolecules moving in a potential induced by the surface lattice model.A second component of the proposed research is an extension of theanalytical and computational methodology for modeling molecular motorsto include more physical realism. Asymptotic and stochastictechniques will be employed to characterize molecular motors operatingin multiple dimensions and/or with multiple degrees of freedom, and toincorporate random modulations in the force potentials. The ImmersedBoundary computational method, recently extended to include thermalfluctuations, will be used to simulate molecular motor processes in away which incorporates in a natural way osmotic effects and thedynamics of the fluid medium.More broadly, this CAREER project comprises a research program andcourse developments at the undergraduate and graduate levels whichwill apply the principal investigator's prior experience in turbulencemodeling to new problems in microbiology, and provide more systematicopportunities to communicate knowledge and problem-solvingapproaches to undergraduate and graduate students. The researchobjective pertaining to the interaction between protein and watermolecules has the potential for providing a significant speedup insimulations of protein dynamics by reducing the cost of modeling theeffects of the water. Accelerated protein dynamic simulations wouldexpedite both our basic understanding of protein dynamics and thetechnological development of drugs and devices designed to interactwith proteins. Analytical and computational research on molecularmotors will aim to improve the physical understanding of howbiological cells move and transport material within themselves. Thebroader impacts of the project include the interdisciplinary trainingof graduate students in mathematical and computational modeling inmicrobiology, the introduction of new graduate courses on stochasticmodeling, the renovation of an undergraduate course on probabilitytheory to incorporate modern researchefforts and issues as contexts for the learning of mathematicaltechniques, material to be posted on the World Wide Web to disseminatethese pedagogical applications, and broader opportunities forundergraduate students to gain experience in mathematical modeling.
这个CAREER项目的研究方面涉及随机建模和渐近技术在微生物学中的两个问题的应用,这两个问题可以在随机环境中的随机运动框架内进行。首先,将开发一个随机模型来表示水分子如何与蛋白质表面相互作用。水在蛋白质的功能中起着至关重要的作用,在试图预测蛋白质分子动力学的分子动力学模拟中必须考虑到水。然而,在这样的模拟中详细地包含水分子是非常昂贵的,并且限制了这些模拟的实际范围。研究中开发的水-蛋白质相互作用的随机模型旨在提供更有效的水效应表示,从而加速蛋白质动力学计算。它将包括蛋白质表面化学和几何的晶格模型参数化和水分子在表面晶格模型诱导的电位中运动的广义扩散过程。提出的研究的第二个组成部分是对分子马达建模的分析和计算方法的扩展,以包括更多的物理真实性。渐近和随机技术将被用于表征在多维度和/或具有多个自由度的分子马达,并在力势中纳入随机调制。最近扩展到包括热波动的immerseboundary计算方法将用于模拟分子运动过程,该过程以自然的方式结合了渗透效应和流体介质的动力学。更广泛地说,这个职业项目包括一个研究项目和本科和研究生阶段的课程开发,这将应用首席研究员之前在湍流建模方面的经验来解决微生物学的新问题,并为本科生和研究生提供更多系统的机会来交流知识和解决问题的方法。有关蛋白质和水分子之间相互作用的研究目标有可能通过降低水的影响的建模成本,为蛋白质动力学的模拟提供显著的加速。加速蛋白质动力学模拟将加速我们对蛋白质动力学的基本理解,以及设计用于与蛋白质相互作用的药物和设备的技术发展。分子马达的分析和计算研究将旨在提高对生物细胞如何在其内部移动和运输物质的物理理解。该项目的更广泛影响包括对研究生进行微生物学数学和计算建模的跨学科培训,引入新的研究生随机建模课程,更新概率论本科课程,将现代研究成果和问题纳入数学技术学习的背景,将材料发布在万维网上以传播这些教学应用。为本科生提供更广泛的机会获得数学建模经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kramer其他文献
Sodium excretion in goldblatt hypertension
- DOI:
10.1007/bf00588579 - 发表时间:
1972-01-01 - 期刊:
- 影响因子:2.900
- 作者:
Peter Kramer;Bruno Ochwadt - 通讯作者:
Bruno Ochwadt
Visual attentional capture predicts belief in a meaningful world
视觉注意力捕获预测对有意义的世界的信念
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.6
- 作者:
P. Bressan;Peter Kramer;M. Germani - 通讯作者:
M. Germani
How people update their beliefs about climate change: An experimental investigation of the optimistic update bias and how to reduce it
人们如何更新他们对气候变化的信念:对乐观更新偏差以及如何减少它的实验调查
- DOI:
10.1111/pops.12920 - 发表时间:
2023 - 期刊:
- 影响因子:4.6
- 作者:
T. Kube;M. Wullenkord;L. Rozenkrantz;Peter Kramer;Sophia Lieb;Claudia Menzel - 通讯作者:
Claudia Menzel
Ignoring color in transparency perception
忽略透明度感知中的颜色
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0.3
- 作者:
Peter Kramer;P. Bressan - 通讯作者:
P. Bressan
Gating of remote effects on lightness.
控制对亮度的远程影响。
- DOI:
10.1167/8.2.16 - 发表时间:
2008 - 期刊:
- 影响因子:1.8
- 作者:
P. Bressan;Peter Kramer - 通讯作者:
Peter Kramer
Peter Kramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kramer', 18)}}的其他基金
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
- 批准号:
2153374 - 财政年份:2022
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
DynSyst_Special_Topics: Correlations and Stochastic Dynamics in Suspensions of Swimming Microorganisms
DynSyst_Special_Topics:游动微生物悬浮液中的相关性和随机动力学
- 批准号:
1211665 - 财政年份:2012
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Application of Multi-Scale and Stochastic Methods to Mesoscale Eddy Parameterization Schemes
合作研究:CMG——多尺度随机方法在中尺度涡流参数化方案中的应用
- 批准号:
0620956 - 财政年份:2006
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Random Models for Turbulent Fluid Systems
湍流流体系统的随机模型
- 批准号:
0207242 - 财政年份:2002
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705973 - 财政年份:1997
- 资助金额:
$ 41.21万 - 项目类别:
Fellowship Award
The High Speed Centrifuge in Biochemistry and Biology
生物化学和生物学中的高速离心机
- 批准号:
9250848 - 财政年份:1992
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2306769 - 财政年份:2023
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Exit Time from the perspective of random dynamical systems and its application in stochastic resonance
随机动力系统视角下的退出时间及其在随机共振中的应用
- 批准号:
2752048 - 财政年份:2022
- 资助金额:
$ 41.21万 - 项目类别:
Studentship
Dynamical Approaches for Some Complex Stochastic Systems
一些复杂随机系统的动力学方法
- 批准号:
2205972 - 财政年份:2022
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Collaborative Research: Negotiated Planning for Stochastic Control of Dynamical Systems
协作研究:动力系统随机控制的协商规划
- 批准号:
2105631 - 财政年份:2021
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
Stochastic analysis of intermittent maps and random dynamical systems via operator renewal theory
通过算子更新理论对间歇映射和随机动力系统进行随机分析
- 批准号:
21J00015 - 财政年份:2021
- 资助金额:
$ 41.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigation of the mathematical structure of resilience in aircraft operation using stochastic dynamical systems theory
使用随机动力系统理论研究飞机运行中弹性的数学结构
- 批准号:
21K14350 - 财政年份:2021
- 资助金额:
$ 41.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Negotiated Planning for Stochastic Control of Dynamical Systems
协作研究:动力系统随机控制的协商规划
- 批准号:
2105502 - 财政年份:2021
- 资助金额:
$ 41.21万 - 项目类别:
Standard Grant
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
- 批准号:
1847144 - 财政年份:2019
- 资助金额:
$ 41.21万 - 项目类别:
Continuing Grant
Data-Driven Learning Optimization of Dynamical System with Stochastic Uncertainty and Its Application
随机不确定性动态系统的数据驱动学习优化及其应用
- 批准号:
19K15019 - 财政年份:2019
- 资助金额:
$ 41.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists