Random Models for Turbulent Fluid Systems
湍流流体系统的随机模型
基本信息
- 批准号:0207242
- 负责人:
- 金额:$ 11.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is directed toward the general goal of developing some fundamental understanding of nonlinear processes in turbulent fluids, with particular attention to the development of effective equations which describe the dynamics of complex systems on a coarse-grained level. Two particular physical phenomena are examined: the mixing and transport of substances immersed in a turbulent fluid and the interaction between weakly nonlinear waves. The common mode of investigation is a precise analysis of simplified stochastic models. The main feature of the turbulent transport model is its inclusion of both a large-scale mean flow, which can depend on both space and time, and a small-scale fluctuating component of the velocity field. This allows a study of how the large and small scales of a turbulent fluid interact in determining the effective evolution of the passive scalar density. The work will be directed toward extending some rigorous homogenization theorems and investigating some physical phenomena which arise from the new features of the model. The second research area concerns the development of simplified equations to describe wave propagation under the influence of weak nonlinearity. A well-known weak turbulence theory has found some success in treating such systems in a number of contexts, but its foundations and limitations are still under active investigation. Some particular aspects of the weak turbulence theory will be scrutinized and illustrated on the Fermi-Pasta-Ulam model. The outcomes of this analysis will be used to suggest modifications of the standard kinetic equations of weak turbulence theory which may improve their accuracy and generalize their domain of applicability.Both of these studies are directed toward achieving a better understanding of how turbulent systems can be effectively described through simplified equations. A chief application of this research theme is in atmosphere-ocean models designed for climate and weather prediction. Limitations on both available data and supercomputing resources make fully detailed simulations impossible for the forseeable future, and the effects of turbulence must be represented by some managable set of parameters. The research described above will contribute toward a better understanding of how turbulence can be parameterized in atmosphere-ocean science models in a more rational and effective manner.
这项研究的总体目标是对湍流流体中的非线性过程有一些基本的了解,特别注意在粗粒度水平上描述复杂系统动力学的有效方程的发展。 两个特殊的物理现象进行检查:混合和运输的物质浸没在湍流流体和弱非线性波之间的相互作用。调查的常见模式是对简化的随机模型进行精确分析。湍流输运模型的主要特点是它包含了大尺度的平均流,它可以依赖于空间和时间,和一个小尺度的速度场的波动分量。 这使得研究如何大规模和小规模的湍流流体相互作用,在确定的被动标量密度的有效演变。 工作将针对扩展一些严格的均匀化定理和调查的一些物理现象所产生的新功能的模型。 第二个研究领域涉及的简化方程的发展来描述弱非线性的影响下的波传播。 一个著名的弱湍流理论已经在许多情况下成功地处理了这样的系统,但它的基础和局限性仍在积极的研究中。 弱湍流理论的某些特殊方面将在费米-帕斯塔-乌拉姆模型上进行详细的研究和说明。 分析的结果将被用来建议弱湍流理论的标准动力学方程的修改,这可能会提高其精度和推广其域的application.Both这些研究都是针对实现更好地理解如何湍流系统可以有效地描述通过简化的方程。 该研究主题的主要应用是为气候和天气预测而设计的大气-海洋模型。 可用数据和超级计算资源的限制使得在可预见的未来不可能进行完全详细的模拟,并且湍流的影响必须由一些可管理的参数集来表示。 上述研究将有助于更好地理解如何以更合理和有效的方式在大气-海洋科学模式中参数化湍流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Kramer其他文献
Sodium excretion in goldblatt hypertension
- DOI:
10.1007/bf00588579 - 发表时间:
1972-01-01 - 期刊:
- 影响因子:2.900
- 作者:
Peter Kramer;Bruno Ochwadt - 通讯作者:
Bruno Ochwadt
Visual attentional capture predicts belief in a meaningful world
视觉注意力捕获预测对有意义的世界的信念
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.6
- 作者:
P. Bressan;Peter Kramer;M. Germani - 通讯作者:
M. Germani
How people update their beliefs about climate change: An experimental investigation of the optimistic update bias and how to reduce it
人们如何更新他们对气候变化的信念:对乐观更新偏差以及如何减少它的实验调查
- DOI:
10.1111/pops.12920 - 发表时间:
2023 - 期刊:
- 影响因子:4.6
- 作者:
T. Kube;M. Wullenkord;L. Rozenkrantz;Peter Kramer;Sophia Lieb;Claudia Menzel - 通讯作者:
Claudia Menzel
Ignoring color in transparency perception
忽略透明度感知中的颜色
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0.3
- 作者:
Peter Kramer;P. Bressan - 通讯作者:
P. Bressan
Gating of remote effects on lightness.
控制对亮度的远程影响。
- DOI:
10.1167/8.2.16 - 发表时间:
2008 - 期刊:
- 影响因子:1.8
- 作者:
P. Bressan;Peter Kramer - 通讯作者:
Peter Kramer
Peter Kramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Kramer', 18)}}的其他基金
Collaborative Research: DMS/NIGMS 1: Mesoscale Kinetic Theory of Early Mitotic Spindle Organization
合作研究:DMS/NIGMS 1:早期有丝分裂纺锤体组织的中尺度动力学理论
- 批准号:
2153374 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
DynSyst_Special_Topics: Correlations and Stochastic Dynamics in Suspensions of Swimming Microorganisms
DynSyst_Special_Topics:游动微生物悬浮液中的相关性和随机动力学
- 批准号:
1211665 - 财政年份:2012
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Application of Multi-Scale and Stochastic Methods to Mesoscale Eddy Parameterization Schemes
合作研究:CMG——多尺度随机方法在中尺度涡流参数化方案中的应用
- 批准号:
0620956 - 财政年份:2006
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
CAREER: Stochastic Dynamical Models in Microbiology
职业:微生物学中的随机动力学模型
- 批准号:
0449717 - 财政年份:2005
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705973 - 财政年份:1997
- 资助金额:
$ 11.6万 - 项目类别:
Fellowship Award
The High Speed Centrifuge in Biochemistry and Biology
生物化学和生物学中的高速离心机
- 批准号:
9250848 - 财政年份:1992
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Improved computational models for particle transport in turbulent wall-bounded flows
改进的湍流壁面流动中粒子输运的计算模型
- 批准号:
RGPIN-2022-04981 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Scale-dependent reduced-order models for turbulent flows
职业:湍流的尺度相关降阶模型
- 批准号:
2237537 - 财政年份:2022
- 资助金额:
$ 11.6万 - 项目类别:
Continuing Grant
New models of turbulent sediment transport
湍流沉积物输送的新模型
- 批准号:
EP/V049054/1 - 财政年份:2021
- 资助金额:
$ 11.6万 - 项目类别:
Research Grant
Understanding rough-wall flows and turbulent mixing for improved models
了解粗糙壁流和湍流混合以改进模型
- 批准号:
LP180100712 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
Linkage Projects
Direct estimation of turbulent transport coefficients in solar mean-field dynamo models
太阳平均场发电机模型中湍流输运系数的直接估计
- 批准号:
19K14756 - 财政年份:2019
- 资助金额:
$ 11.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Reduced Dynamical Models of Turbulent Flow
湍流简化动力学模型
- 批准号:
RGPIN-2014-04035 - 财政年份:2018
- 资助金额:
$ 11.6万 - 项目类别:
Discovery Grants Program - Individual
Reduced Dynamical Models of Turbulent Flow
湍流简化动力学模型
- 批准号:
RGPIN-2014-04035 - 财政年份:2017
- 资助金额:
$ 11.6万 - 项目类别:
Discovery Grants Program - Individual
Advanced radiation models to enable direct comparisons between computed and measured temperatures and compositions in laminar and turbulent flames
先进的辐射模型可以直接比较计算和测量的层流和湍流火焰中的温度和成分
- 批准号:
1604446 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Collaborative Research: Coordinated Experiments and Simulations of Near-Surface Turbulent Flow over Barchan Dunes: Informing Models of Dune Migration and Interaction
合作研究:新月形沙丘近地表湍流的协调实验和模拟:为沙丘迁移和相互作用模型提供信息
- 批准号:
1604155 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Computationally efficient LES-TPDF turbulent combustion models
计算高效的 LES-TPDF 湍流燃烧模型
- 批准号:
319178666 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Research Grants