Existence, Regularity, and Behavior of Solutions to Kinetic Equations

动力学方程解的存在性、规律性和行为

基本信息

  • 批准号:
    1211667
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

A collisionless plasma is a fully ionized gas in which electromagnetic forces are strong enough to dominate collisional effects. The motion of a high temperature, low density collisionless plasma is described by the Vlasov-Maxwell equations, a nonlinear system of hyperbolic partial differential equations. In this setting collisions are neglected while the charge and current densities, which drive the Maxwell system, are determined in a self-consistent manner from velocity moments of solutions to the Vlasov equation. The major question to be studied is this: are there shocks in a collisionless plasma? That is, could a singularity develop from smoothly prescribed initial values as time progresses? In some cases, such as in lower dimensional, relativistic formulations (e.g., one space and two velocity variables), smooth global solutions are known to exist. Another problem to be investigated concerns the long-time behavior of the charge and current densities and electromagnetic fields in the system. More specifically, do dispersive effects in the equations cause these quantities to decay over time, or is there sufficient interaction so as to sustain their strength even as time tends to infinity?Kinetic Theory includes the study of the motion and properties of plasma. Plasmas are often referred to as the fourth state of matter (after solids, liquids and gases) and account for 99.99% of all material in the universe. They are of great practical interest because they are charged gases, and thus serve as excellent conductors of electricity. As an example, plasma engines have been developed by a number of space agencies and recently used to power some NASA spacecraft. Additionally, the use of plasmas through nuclear fusion as a source of clean energy is currently of immense scientific interest. Notable examples of collisionless plasmas include the solar wind, the Earth's ionosphere, galactic nebulae, low-density fusion reactors, and comet tails. A complete understanding of the solar wind would also be extremely useful, as this natural phenomenon dictates the intensity of "space weather", which is often responsible for expensive damage to satellites orbiting the Earth. The motion of a plasma is described by a number of complicated differential equations dictated by physics. Among the goals of the current project are to show that these equations possess solutions (under appropriate conditions), determine their qualitative behavior, and approximate them computationally so that one can predict behavior in future situations with certainty.
无碰撞等离子体是一种完全电离的气体,其中电磁力足够强,可以控制碰撞效应。高温、低密度无碰撞等离子体的运动由Vlasov-Maxwell方程组描述,该方程组是一个非线性的双曲型偏微分方程组。在这种情况下,碰撞被忽略,而电荷和电流密度,驱动麦克斯韦系统,确定在一个自洽的方式从速度时刻的解决方案的弗拉索夫方程。要研究的主要问题是:在无碰撞的等离子体中是否存在激波?也就是说,随着时间的推移,奇点会从光滑的初始值发展出来吗?在某些情况下,例如在较低维的相对论公式(例如,一个空间和两个速度变量),已知存在光滑的全局解。 另一个要研究的问题是系统中电荷和电流密度以及电磁场的长时间行为。 更具体地说,方程中的色散效应是否会导致这些量随时间衰减,或者是否存在足够的相互作用,以便即使时间趋于无穷大也能维持它们的强度?动力学理论包括等离子体的运动和性质的研究。等离子体通常被称为物质的第四种状态(固体,液体和气体之后),占宇宙中所有物质的99.99%。它们具有很大的实际意义,因为它们是带电气体,因此是优良的电导体。例如,等离子体发动机已经由许多航天机构开发,最近用于为一些NASA航天器提供动力。此外,通过核聚变使用等离子体作为清洁能源目前具有巨大的科学兴趣。 无碰撞等离子体的典型例子包括太阳风、地球电离层、银河系星云、低密度聚变反应堆和彗星尾。对太阳风的全面了解也将极为有用,因为这一自然现象决定了“空间天气”的强度,而空间天气往往是对绕地球轨道运行的卫星造成昂贵损害的原因。等离子体的运动由物理学规定的许多复杂的微分方程描述。当前项目的目标之一是证明这些方程具有解(在适当的条件下),确定它们的定性行为,并通过计算近似它们,以便可以确定地预测未来情况下的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Pankavich其他文献

Parallelization of particle-mass-transfer algorithms on shared-memory, multi-core CPUs
基于共享内存、多核 CPU 的粒子传质算法并行化
  • DOI:
    10.1016/j.advwatres.2024.104818
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    David A. Benson;Ivan Pribec;Nicholas B. Engdahl;Stephen Pankavich;Lucas Schauer
  • 通讯作者:
    Lucas Schauer
Convergence of mass transfer particle tracking schemes for the simulation of advection-diffusion-reaction equations
用于模拟对流 - 扩散 - 反应方程的传质粒子追踪方案的收敛性
  • DOI:
    10.1016/j.amc.2025.129358
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Stephen Pankavich;Lucas Schauer;Michael J. Schmidt;Nicholas B. Engdahl;Diogo Bolster;David A. Benson
  • 通讯作者:
    David A. Benson
Instability conditions for some periodic BGK waves in the Vlasov-Poisson system
  • DOI:
    10.1140/epjd/e2014-50170-y
  • 发表时间:
    2014-12-02
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Stephen Pankavich;Robert Allen
  • 通讯作者:
    Robert Allen

Stephen Pankavich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Pankavich', 18)}}的其他基金

Analytical and Numerical Methods in Collisionless Kinetic Theory
无碰撞运动理论中的分析和数值方法
  • 批准号:
    2107938
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Novel Computational Methods for Imperfectly-Mixed Chemical Reactions
不完全混合化学反应的新计算方法
  • 批准号:
    1911145
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Well-posedness and Behavior of Solutions to Kinetic Equations
动力学方程解的适定性和行为
  • 批准号:
    1614586
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EDT: Front Range Applied Mathematics Exchanges and Workshops
EDT:前沿应用数学交流和研讨会
  • 批准号:
    1551229
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似海外基金

Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
  • 批准号:
    2205493
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
  • 批准号:
    1615239
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Local Regularity and Long Time Behavior of Solutions on Non-Linear Evolution Equations
非线性演化方程解的局部正则性和长期行为
  • 批准号:
    0406627
  • 财政年份:
    2004
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Behavior of regularity CD25+ CD4 T cells in vivo
体内规律性 CD25 CD4 T 细胞的行为
  • 批准号:
    6850666
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Behavior of regularity CD25+ CD4 T cells in vivo
体内规律性 CD25 CD4 T 细胞的行为
  • 批准号:
    7060654
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Behavior of regularity CD25+ CD4 T cells in vivo
体内规律性 CD25 CD4 T 细胞的行为
  • 批准号:
    7353359
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Behavior of regularity CD25+ CD4 T cells in vivo
体内规律性 CD25 CD4 T 细胞的行为
  • 批准号:
    6702593
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Behavior of regularity CD25+ CD4 T cells in vivo
体内规律性 CD25 CD4 T 细胞的行为
  • 批准号:
    7026397
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
Geophysical Models: Regularity, Justification and Long-time Behavior
地球物理模型:规律性、合理性和长期行为
  • 批准号:
    9704632
  • 财政年份:
    1997
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了