Behavior and regularity properties of solutions of fluid equations
流体方程解的行为和规律性
基本信息
- 批准号:1615239
- 负责人:
- 金额:$ 28.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kukavica1615239 The investigator studies the properties of solutions of equations that describe the motion of fluids. He considers the Navier-Stokes system, which is the principal model for motion of a viscous incompressible fluid, the Prandtl equations (a boundary-layer approximation for Navier-Stokes), the Euler equations (roughly speaking, Navier-Stokes with zero viscosity), and the primitive equations, which represent large-scale motion of the ocean and atmosphere. He analyzes fluid-structure interactions between a fluid and an elastic solid, other problems involving free boundaries, the limiting behavior of viscous fluids in the presence of boundaries as the viscosity goes to zero, and the regularity and long-time behavior of solutions. Results expand our understanding of fluid flow problems arising in geosciences, engineering, and other areas, especially in connection with control and numerical methods. Graduate students are involved in the work of the project. The main goal of the project is the study of the qualitative properties and regularity of solutions of equations arising in fluid dynamics. While the primary focus is placed on the Navier-Stokes equations, the investigator considers also related models such as the Euler system, Prandtl equations, and the primitive equations of the ocean and the atmosphere. A special emphasis is systems involving a fluid (compressible or incompressible) and an elastic solid. Here the main aim is to investigate the local and global well-posedness of solutions as well as their large-time behavior when they exist. The investigator also studies the vanishing viscosity problem in domains with boundaries, using the properties of the local asymptotics. The main goal here is to better understand the solutions of the Prandtl equation and to identify their role in the vanishing viscosity limit. The last part of the project concerns the local properties of solutions of the partial differential equations modeling fluids, in particular their analytic and Gevrey regularity, unique continuation, and their long time behavior. Graduate students are involved in the work of the project.
Kukavica1615239 研究者研究描述流体运动的方程的解的性质。 他考虑了Navier-Stokes系统,这是粘性不可压缩流体运动的主要模型,普朗特方程(Navier-Stokes的边界层近似),欧拉方程(粗略地说,零粘度的Navier-Stokes)和原始方程,代表了海洋和大气的大尺度运动。 他分析了流体和弹性固体之间的流体-结构相互作用,涉及自由边界的其他问题,粘性流体在边界存在时的极限行为,粘度趋于零,以及解决方案的规律性和长期行为。 结果扩展了我们对地球科学,工程和其他领域中出现的流体流动问题的理解,特别是与控制和数值方法有关的问题。 研究生参与了该项目的工作。 该项目的主要目标是研究流体动力学方程解的定性性质和规律性。 虽然主要的重点是放在Navier-Stokes方程,研究人员也考虑相关的模型,如欧拉系统,普朗特方程,海洋和大气的原始方程。 特别强调的是涉及流体(可压缩或不可压缩)和弹性固体的系统。 本文的主要目的是研究解的局部和全局适定性以及解存在时的大时间行为。 利用局部渐近性质,研究了具有边界区域的粘性消失问题。 这里的主要目标是更好地理解普朗特方程的解决方案,并确定其在消失的粘度极限的作用。 该项目的最后一部分涉及局部性质的偏微分方程建模流体的解决方案,特别是他们的分析和Gevrey正则性,独特的延续,以及他们的长期行为。 研究生参与了该项目的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Kukavica其他文献
On the Local Existence of Solutions to the Fluid–Structure Interaction Problem with a Free Interface
- DOI:
10.1007/s00245-024-10195-6 - 发表时间:
2024-11-06 - 期刊:
- 影响因子:1.700
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Preface: In Memory of A.V. Balakrishnan
- DOI:
10.1007/s00245-016-9351-7 - 发表时间:
2016-04-11 - 期刊:
- 影响因子:1.700
- 作者:
Alain Bensoussan;Igor Kukavica;Irena Lasiecka;Sanjoy Mitter;Roger Temam;Roberto Triggiani - 通讯作者:
Roberto Triggiani
On the Local Existence of Solutions to the compressible Navier–Stokes-Wave System with a Free Interface
- DOI:
10.1007/s00021-024-00861-8 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:1.300
- 作者:
Igor Kukavica;Linfeng Li;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Construction of the free-boundary 3D incompressible Euler flow under limited regularity
有限正则性下自由边界 3D 不可压缩欧拉流的构造
- DOI:
10.1016/j.jde.2024.02.027 - 发表时间:
2024-06-15 - 期刊:
- 影响因子:2.300
- 作者:
Mustafa Sencer Aydin;Igor Kukavica;Wojciech S. Ożański;Amjad Tuffaha - 通讯作者:
Amjad Tuffaha
Backward behavior of solutions of the Kuramoto–Sivashinsky equation
- DOI:
10.1016/j.jmaa.2005.01.057 - 发表时间:
2005-07-15 - 期刊:
- 影响因子:
- 作者:
Igor Kukavica;Mehmet Malcok - 通讯作者:
Mehmet Malcok
Igor Kukavica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Kukavica', 18)}}的其他基金
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
- 批准号:
2205493 - 财政年份:2022
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Qualitative Properties of Solutions to Fluids Equations
流体方程解的定性性质
- 批准号:
1907992 - 财政年份:2019
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Qualitative studies of the Navier-Stokes and related systems
纳维-斯托克斯及相关系统的定性研究
- 批准号:
1311943 - 财政年份:2013
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
Analytical Description of an Incompressible Flow
不可压缩流的分析描述
- 批准号:
1009769 - 财政年份:2010
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Qualitative Behavior of Turbulent Flows
湍流的定性行为
- 批准号:
0604886 - 财政年份:2006
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Small Scales in the Navier-Stokes Equations
纳维-斯托克斯方程中的小尺度
- 批准号:
0072662 - 财政年份:2000
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9623161 - 财政年份:1996
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
相似国自然基金
铁磁现象与超导电性的数学理论
- 批准号:10471050
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Regularity Properties and K-Theory of Crossed Product Operator Algebras
叉积算子代数的正则性质与K理论
- 批准号:
2055736 - 财政年份:2021
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Regularity properties of infinite-dimensional Lie groups, and exponential laws
无限维李群的正则性质和指数定律
- 批准号:
384439538 - 财政年份:2017
- 资助金额:
$ 28.56万 - 项目类别:
Research Grants
Search for regularity of crystal structure based on atomic environment type
基于原子环境类型寻找晶体结构的规律性
- 批准号:
17K06783 - 财政年份:2017
- 资助金额:
$ 28.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity properties of solutions to the 3D Navier-Stokes equations
3D 纳维-斯托克斯方程解的正则性质
- 批准号:
1517583 - 财政年份:2015
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
Regularity of solutions to infinitely degenerate quasilinear equations. Properties of associated metric spaces. Stochastic processes associated to nonlinear elliptic equations.
无限简并拟线性方程解的正则性。
- 批准号:
454854-2014 - 财政年份:2015
- 资助金额:
$ 28.56万 - 项目类别:
Postdoctoral Fellowships
Regularity of solutions to infinitely degenerate quasilinear equations. Properties of associated metric spaces. Stochastic processes associated to nonlinear elliptic equations.
无限简并拟线性方程解的正则性。
- 批准号:
454854-2014 - 财政年份:2014
- 资助金额:
$ 28.56万 - 项目类别:
Postdoctoral Fellowships
Regularity properties of stationary and evolution free boundary problems
平稳和自由演化边界问题的正则性
- 批准号:
1301535 - 财政年份:2013
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
Geometric, convexity and regularity properties of certain classes of convex bodies
某些类凸体的几何、凸性和正则性性质
- 批准号:
1100657 - 财政年份:2011
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Topological and algebraic regularity properties of nuclear C*-algebras
NSF/CBMS 数学科学区域会议 -- 核 C* 代数的拓扑和代数正则性性质
- 批准号:
1138022 - 财政年份:2011
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Topological and Algebraic Regularity Properties of Nuclear C*-Algebras
核 C* 代数的拓扑和代数正则性质
- 批准号:
EP/G014019/2 - 财政年份:2011
- 资助金额:
$ 28.56万 - 项目类别:
Research Grant