Mathematical Methods for the New Commodity & Environmental Markets
新商品的数学方法
基本信息
- 批准号:1211928
- 负责人:
- 金额:$ 25.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CarmonaDMS-1211928 The mathematical core of the project is the study of approximate equilibriums for stochastic differential games with a large number of players. The first challenge is to initiate the probabilistic approach to the mean-field game paradigm originally advocated by Lasry and Lions. As a natural extension, the investigator develops the theoretical and practical tools needed for the optimal control of stochastic differential equations of McKean-Vlasov type, a problem that has not been studied despite the importance of its applications to the understanding of the behavior of large populations. The investigator develops a form of the Pontryagin maximum principle appropriate for these mean-field dynamics, derives the systems of mean-field Forward-Backward Stochastic Differential Equations arising from specifically crafted adjoint processes, and provides existence results for these new types of equations. The project is motivated by the dramatic societal impacts of changes in the production and prices of commodities observed in the last few years. The increase in the number of institutions investing in commodities has changed the behavior of the prices of these commodities, and their relationships among themselves and with equity prices. Moreover, the use of market mechanisms to curb emissions of greenhouse gases in the hope of controlling climate change has also affected some of these markets. The investigator focuses on new theoretical problems motivated by the energy and emissions markets, and aims at the development of tools to help risk managers, regulators, and policy makers handle the challenges of these new markets.
该项目的数学核心是研究具有大量参与者的随机微分博弈的近似均衡。第一个挑战是将概率方法引入最初由Lasry和Lions倡导的平均场博弈范式。作为自然延伸,研究者开发了McKean-Vlasov型随机微分方程的最优控制所需的理论和实践工具,尽管该问题在理解大群体行为方面具有重要的应用,但尚未被研究。研究者开发了一种适合于这些平均场动力学的庞特里亚金极大原理的形式,推导了由特别精心制作的伴随过程产生的平均场正反向随机微分方程系统,并提供了这些新类型方程的存在性结果。该项目的动机是在过去几年中观察到的商品生产和价格变化的巨大社会影响。投资大宗商品的机构数量的增加,改变了这些商品的价格行为,以及它们之间以及与股票价格的关系。此外,利用市场机制遏制温室气体排放,以期控制气候变化,也对其中一些市场产生了影响。研究者专注于能源和排放市场引发的新理论问题,并致力于开发工具来帮助风险管理者、监管者和政策制定者应对这些新市场的挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rene Carmona其他文献
Eigenfunction expansions for infinite dimensional Ornstein-Uhlenbeck processes
- DOI:
10.1007/bf01845638 - 发表时间:
1987-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Anestis Antoniadis;Rene Carmona - 通讯作者:
Rene Carmona
Stochastic Analysis and Applications 2014
随机分析与应用 2014
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Domique Bakry;Erich Bauer;Jean Bertoin;Rene Carmona;Fransois Delarue;Ana Bella Curzerio;Remi Lasselle;Alexander Davie;Joscha Diehl;Peter K. Friz;Harald Oberhauser;Yidong Dong;Ronnie Sircar;David Elworthy;Hans Follmer;Claudia Kluppelberg;Ma - 通讯作者:
Ma
Rene Carmona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rene Carmona', 18)}}的其他基金
Equilibria in Large Populations: Asymmetric Mean Field Games and Optimal Control
大量群体中的均衡:非对称平均场博弈和最优控制
- 批准号:
1716673 - 财政年份:2017
- 资助金额:
$ 25.98万 - 项目类别:
Continuing Grant
Robust Methods in Mathematical Finance
数学金融中的稳健方法
- 批准号:
1515753 - 财政年份:2015
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
EMSW21-RTG: Training, Mentoring & Research in the Mathematics of Stochastic Analysis and Applications
EMSW21-RTG:培训、指导
- 批准号:
0739195 - 财政年份:2008
- 资助金额:
$ 25.98万 - 项目类别:
Continuing Grant
Mathematics of Emissions Markets: Design, Models, Analysis and Simulations
排放市场数学:设计、模型、分析和模拟
- 批准号:
0806591 - 财政年份:2008
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
Seminar on Stochastic Processes 2006
2006年随机过程研讨会
- 批准号:
0549769 - 财政年份:2006
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
FRG: Collaborative Research on Mathematical Methods for Defaultable Instruments
FRG:可违约工具数学方法的合作研究
- 批准号:
0456195 - 财政年份:2005
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
Workshop: Risk Management for the Deregulated Electricity Markets, Princeton University, May 16, 2003
研讨会:放松管制电力市场的风险管理,普林斯顿大学,2003 年 5 月 16 日
- 批准号:
0326360 - 财政年份:2003
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Stochastic Processes for Schrodinger Operators and Functional Estimation
数学科学:薛定谔算子的随机过程和函数估计
- 批准号:
9006596 - 财政年份:1990
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
- 批准号:
23K03210 - 财政年份:2023
- 资助金额:
$ 25.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New methods for model construction and calibration using machine learning and mathematical modelling.
使用机器学习和数学建模进行模型构建和校准的新方法。
- 批准号:
2426446 - 财政年份:2020
- 资助金额:
$ 25.98万 - 项目类别:
Studentship
New Mathematical Methods for Dynamic Fracture Evolution
动态断裂演化的新数学方法
- 批准号:
1909991 - 财政年份:2019
- 资助金额:
$ 25.98万 - 项目类别:
Standard Grant
New Mathematical Methods for Fracture Evolution
断裂演化的新数学方法
- 批准号:
1616197 - 财政年份:2016
- 资助金额:
$ 25.98万 - 项目类别:
Continuing Grant
EAPSI: Establishing New Mathematical Methods for Analyzing Simulated Models of Fuel Combustion
EAPSI:建立新的数学方法来分析燃料燃烧模拟模型
- 批准号:
1613817 - 财政年份:2016
- 资助金额:
$ 25.98万 - 项目类别:
Fellowship Award
Atmospheric temperature retrievals and comparisons of Rayleigh-scatter lidar measurements using new methods of nonlinear mathematical inversion and optimization.
使用非线性数学反演和优化的新方法进行瑞利散射激光雷达测量的大气温度反演和比较。
- 批准号:
426850-2012 - 财政年份:2012
- 资助金额:
$ 25.98万 - 项目类别:
Postgraduate Scholarships - Master's
A new improved solution to global optimization over multivariate polynomials: Mathematical principles, numerical methods and selected applications
多元多项式全局优化的新改进解决方案:数学原理、数值方法和选定的应用
- 批准号:
DP1092508 - 财政年份:2010
- 资助金额:
$ 25.98万 - 项目类别:
Discovery Projects
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
- 批准号:
7901563 - 财政年份:2009
- 资助金额:
$ 25.98万 - 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
- 批准号:
8115073 - 财政年份:2009
- 资助金额:
$ 25.98万 - 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
- 批准号:
8310016 - 财政年份:2009
- 资助金额:
$ 25.98万 - 项目类别:














{{item.name}}会员




