New Mathematical Methods for Dynamic Fracture Evolution

动态断裂演化的新数学方法

基本信息

  • 批准号:
    1909991
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

For a large range of applications, from civil infrastructure to national defense, understanding the failure of materials is critical. Yet, our ability to predict this failure is limited by both modeling, which is somewhat ad hoc, and the mathematics available to formulate and analyze models, as well as to justify numerical methods. These issues are most severe in dynamic problems, such as impacts, when loading changes quickly. The main goal of this project is the development of new mathematical methods for dynamic fracture evolution. In particular, the principal investigator (PI) will extend methods for regular crack paths to more realistic paths, with kinking and branching. A second goal is to address fundamental mathematical issues that are necessary for further progress in completely general settings. Finally, the PI will study phase-field approximations of fracture, which have become very popular tools in the engineering community but remain poorly understood.The ability to accurately predict failure depends on the quality of the underlying mathematical models of defects as well as on understanding fundamental properties of solutions. When crack paths are regular, mathematical methods are available to study these evolutions. However, when they are not, the only methods so far involve considering the paths to be limits of more regular paths. The main technical issue here is that strong convergence of the corresponding elastodynamics is necessary for energy balance, as well as for other properties of solutions, but this convergence remains open in many situations. Another fundamental issue is uniqueness of elastodynamic solutions for a given crack path. The investigator will show uniqueness in certain settings, and explore general consequences, such as bounds on crack speed. The final goal of the project is to analyze phase-field models for fracture. While very popular in the engineering community, a number of properties, including whether they approximate the correct surface energy, or satisfy a maximal dissipation condition, remain open questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于从民用基础设施到国防的广泛应用,了解材料的失效至关重要。然而,我们预测这种故障的能力受到建模的限制,这在某种程度上是特设的,并且数学可用于制定和分析模型,以及证明数值方法。这些问题在动态问题中最为严重,例如当负载快速变化时的冲击。该项目的主要目标是发展新的动态裂缝演化的数学方法。特别是,主要研究者(PI)将扩展方法,定期裂纹路径更现实的路径,扭结和分支。第二个目标是解决基本的数学问题,这些问题对于在完全一般的环境中取得进一步的进展是必要的。最后,PI将研究断裂的相场近似,这已经成为工程界非常流行的工具,但仍然知之甚少。准确预测故障的能力取决于缺陷的基本数学模型的质量以及对解决方案的基本属性的理解。当裂纹路径是规则的时,可以用数学方法来研究这些演化。然而,当它们不是时,到目前为止唯一的方法是将路径视为更规则路径的限制。这里的主要技术问题是,相应的弹性动力学的强收敛是必要的能量平衡,以及解决方案的其他属性,但这种收敛在许多情况下仍然开放。另一个基本问题是对于一个给定的裂纹路径的弹性动力学解的唯一性。研究者将在某些设置中显示唯一性,并探索一般的结果,如裂纹速度的界限。该项目的最终目标是分析裂缝的相场模型。虽然在工程界非常受欢迎,但许多属性,包括它们是否接近正确的表面能,或满足最大耗散条件,仍然存在疑问。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational fracture with boundary loads
边界载荷下的变分断裂
  • DOI:
    10.1016/j.aml.2021.107437
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Larsen, Christopher J.
  • 通讯作者:
    Larsen, Christopher J.
Variational phase-field fracture with controlled nucleation
受控成核的变分相场断裂
  • DOI:
    10.1016/j.mechrescom.2023.104059
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Larsen, Christopher J.
  • 通讯作者:
    Larsen, Christopher J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Larsen其他文献

Kidney Biopsy Findings in People With Metabolic Dysfunction–Associated Steatohepatitis
代谢功能障碍相关脂肪性肝炎患者的肾活检结果
  • DOI:
    10.1016/j.ekir.2025.02.008
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Evgeniya Pasternak;Christopher Larsen;Tiffany Caza
  • 通讯作者:
    Tiffany Caza
Right Versus Left Cuff Position for Upper Airway Stimulation.
上呼吸道刺激的右袖带位置与左袖带位置。
Optimal Design of Gradient Fields with Applications to Electrostatics
梯度场优化设计及其在静电学中的应用
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Lurie;Christopher Larsen;M. Sarkis
  • 通讯作者:
    M. Sarkis

Christopher Larsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Larsen', 18)}}的其他基金

Variational Fracture with Loads
载荷变分断裂
  • 批准号:
    2206114
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
New Mathematical Methods for Fracture Evolution
断裂演化的新数学方法
  • 批准号:
    1616197
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
New Variational Methods for Quasi-static and Dynamic Material Defect Evolution
准静态和动态材料缺陷演化的新变分方法
  • 批准号:
    1313136
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Variational Methods for Material Defect Evolution
材料缺陷演化的变分方法
  • 批准号:
    1009653
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Damage and Fracture Evolution
损伤和断裂演变
  • 批准号:
    0807825
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Relating Glacier-Generated Seismicity to Ice Motion, Basal Processes and Iceberg Calving
将冰川产生的地震活动与冰运动、基底过程和冰山崩解联系起来
  • 批准号:
    0810313
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Is Glacier Wastage Accelerating in Northwestern North America?
北美西北部的冰川消耗是否正在加速?
  • 批准号:
    0612537
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Glacier Seismicity and High Resolution Motion Records: Relation to Glacier Erosion
冰川地震活动和高分辨率运动记录:与冰川侵蚀的关系
  • 批准号:
    0607872
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Variational Methods for Material Damage: Fracture, Fatigue, and Debonding
材料损坏的变分方法:断裂、疲劳和脱粘
  • 批准号:
    0505660
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
The Relationship Between Post-Little-Ice-Age Isostatic Rebound and Active Tectonics in Southern Alaska
阿拉斯加南部后小冰期均衡回弹与活动构造的关系
  • 批准号:
    0408801
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似海外基金

New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New methods for model construction and calibration using machine learning and mathematical modelling.
使用机器学习和数学建模进行模型构建和校准的新方法。
  • 批准号:
    2426446
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
New Mathematical Methods for Fracture Evolution
断裂演化的新数学方法
  • 批准号:
    1616197
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
EAPSI: Establishing New Mathematical Methods for Analyzing Simulated Models of Fuel Combustion
EAPSI:建立新的数学方法来分析燃料燃烧模拟模型
  • 批准号:
    1613817
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Award
Mathematical Methods for the New Commodity & Environmental Markets
新商品的数学方法
  • 批准号:
    1211928
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Atmospheric temperature retrievals and comparisons of Rayleigh-scatter lidar measurements using new methods of nonlinear mathematical inversion and optimization.
使用非线性数学反演和优化的新方法进行瑞利散射激光雷达测量的大气温度反演和比较。
  • 批准号:
    426850-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Postgraduate Scholarships - Master's
A new improved solution to global optimization over multivariate polynomials: Mathematical principles, numerical methods and selected applications
多元多项式全局优化的新改进解决方案:数学原理、数值方法和选定的应用
  • 批准号:
    DP1092508
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Projects
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
  • 批准号:
    8115073
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
  • 批准号:
    7901563
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
New Mathematical Methods for Protein Loop Modeling
蛋白质环建模的新数学方法
  • 批准号:
    8310016
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了