Strings, Branes and Holography
弦、膜和全息术
基本信息
- 批准号:1214344
- 负责人:
- 金额:$ 105万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds the research activities of Professors K. Becker, M. Becker, and E. Sezgin at Texas A&M University. This research project addresses fundamental aspects of string theory and also explores connections to other areas of physics such as high temperature superconductivity. The first set of projects deals with string perturbation theory and the construction of D-brane effective actions. The results of such work could also be used to check the consistency of models of particle physics obtained from string theory. Another topic to be investigated concerns the application of string theory to condensed matter physics, specifically high temperature superconductivity. Other topics to be investigated include conformal field theories beyond two dimensions, as well as the development of remarkable higher-spin extensions of Einstein gravity and their holographic descriptions. The research described in this proposal is envisioned to have significant broader impacts. Beyond the interdisciplinary nature of this research, stretching from high-energy physics to condensed-matter physics, these impacts also include the training of graduate students working towards their Ph.D.'s and the training and mentoring of postdoctoral fellows who will be directly involved with the research funded under this award.
该奖项资助德克萨斯农工大学K. Becker、M. Becker和E. Sezgin教授的研究活动。该研究项目涉及弦理论的基本方面,也探索了与其他物理领域的联系,如高温超导性。第一组项目涉及弦摄动理论和d膜有效作用的构造。这项工作的结果也可以用来检查从弦理论得到的粒子物理模型的一致性。另一个要研究的课题是弦理论在凝聚态物理中的应用,特别是高温超导。其他要研究的主题包括二维以上的共形场论,以及爱因斯坦引力的显著高自旋扩展及其全息描述的发展。本提案中描述的研究预计将产生重大的更广泛的影响。除了这项研究的跨学科性质,从高能物理延伸到凝聚态物理,这些影响还包括对研究生的培训,以及对博士后的培训和指导,这些博士后将直接参与该奖项资助的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katrin Becker其他文献
3D Coverage Path Planning for Efficient Construction Progress Monitoring
3D 覆盖路径规划,实现高效施工进度监控
- DOI:
10.1109/ssrr56537.2022.10018726 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Katrin Becker;M. Oehler;O. Stryk - 通讯作者:
O. Stryk
Stabilizing massless fields with fluxes in Landau-Ginzburg models
在 Landau-Ginzburg 模型中用通量稳定无质量场
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Katrin Becker;Muthusamy Rajaguru;Anindya Sengupta;Johannes Walcher;T. Wrase - 通讯作者:
T. Wrase
Animal Welfare Aspects in Planning and Conducting Experiments on Rodent Models of Subarachnoid Hemorrhage
- DOI:
10.1007/s10571-023-01418-5 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:4.800
- 作者:
Katrin Becker - 通讯作者:
Katrin Becker
Severity assessment and scoring for neurosurgical models in rodents
啮齿动物神经外科模型的严重程度评估和评分
- DOI:
10.1177/0023677216675010 - 发表时间:
2016 - 期刊:
- 影响因子:2.4
- 作者:
S. Pinkernell;Katrin Becker;U. Lindauer - 通讯作者:
U. Lindauer
Katrin Becker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katrin Becker', 18)}}的其他基金
Higher Spin Theories, Kaluza-Klein Superspace and Higher Derivatives
高自旋理论、Kaluza-Klein 超空间和高阶导数
- 批准号:
2112859 - 财政年份:2021
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
M-theory, Superspace and Higher Spin Theories
M 理论、超空间和高自旋理论
- 批准号:
1820921 - 财政年份:2018
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
Fundamental Aspects of M-theory and Superspace
M 理论和超空间的基本方面
- 批准号:
1620742 - 财政年份:2016
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
Strings 2010 Conference held in Collge Station, TX
2010 年弦乐会议在德克萨斯州大学城举行
- 批准号:
0946452 - 财政年份:2010
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
From the Ground State of String Theory to the Standard Model
从弦理论的基态到标准模型
- 批准号:
0602390 - 财政年份:2005
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
From the Ground State of String Theory to the Standard Model
从弦理论的基态到标准模型
- 批准号:
0244722 - 财政年份:2003
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
相似海外基金
RUI: Holography of Balls, Branes, and Baryons
RUI:球、膜和重子的全息术
- 批准号:
2310608 - 财政年份:2023
- 资助金额:
$ 105万 - 项目类别:
Standard Grant
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
- 批准号:
2238679 - 财政年份:2023
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
A new approach to Generalized Kahler geometry and the category of branes.
广义卡勒几何和膜类别的新方法。
- 批准号:
532962-2019 - 财政年份:2021
- 资助金额:
$ 105万 - 项目类别:
Postdoctoral Fellowships
Effective theories at strong coupling and nuclear models from branes
膜强耦合和核模型的有效理论
- 批准号:
20K03930 - 财政年份:2020
- 资助金额:
$ 105万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new approach to Generalized Kahler geometry and the category of branes.
广义卡勒几何和膜类别的新方法。
- 批准号:
532962-2019 - 财政年份:2020
- 资助金额:
$ 105万 - 项目类别:
Postdoctoral Fellowships
A new approach to Generalized Kahler geometry and the category of branes.
广义卡勒几何和膜类别的新方法。
- 批准号:
532962-2019 - 财政年份:2019
- 资助金额:
$ 105万 - 项目类别:
Postdoctoral Fellowships
CAREER: Branes in the Moduli Space of Higgs Bundles
职业:希格斯丛集模空间中的膜
- 批准号:
1749013 - 财政年份:2018
- 资助金额:
$ 105万 - 项目类别:
Continuing Grant
D-branes and black holes in generalized supergravity emerging from superstring theory
超弦理论中出现的广义超引力中的 D 膜和黑洞
- 批准号:
18H01214 - 财政年份:2018
- 资助金额:
$ 105万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of D-Branes in Linear Sigma Models
线性 Sigma 模型中 D 膜的研究
- 批准号:
17K05567 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Obtaining heterotic string theories via orbifold compactification of M-theory at the level of fully non-abelian actions for multiple M2-branes.
通过在多个 M2 膜的完全非阿贝尔作用水平上对 M 理论进行轨道压缩,获得杂优势弦理论。
- 批准号:
2026568 - 财政年份:2017
- 资助金额:
$ 105万 - 项目类别:
Studentship