CAREER: Object Recognition with Hierarchical Models
职业:使用分层模型进行物体识别
基本信息
- 批准号:1215812
- 负责人:
- 金额:$ 16.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractTitle: CAREER: Object Recognition with Hierarchical ModelsPI: Pedro FelzenszwalbInstitution: University of ChicagoCAREER: Object Recognition with Hierarchical ModelsObject recognition is one of the most important problems in computer vision. While researchers have worked on this problem for over thirty years, vision systems are still unable to recognize many common objects in cluttered images. The PI proposes to address this problem by developing new hierarchical models and efficient search algorithms for recognition.Hierarchical models represent objects using parts which are themselves defined in terms of subparts. Moreover, the subparts may be recursively defined in terms of smaller components. This hierarchical organization can efficiently encode important relationships among the components that make up an object. Another important property of hierarchical models is that components can be shared among different object models. This is useful for being able to quickly recognize which of many possible objects are present in an image. It is also important for learning models from small datasets. Finally, in the most general types of models the structure of an object may be specified by a grammar instead of being fixed in advance. The number of parts that make up an object may be variable and there may be choice among different parts that can go in a particular place. All of these aspects make hierarchical models incredibly expressive.Algorithms for object recognition typically search over large spaces encoding the pose of an object, or over correspondences between model features and features extracted from an image. The PI will develop efficient optimization algorithms for solving these problems. This will be accomplished by exploiting the structure of the search spaces defined by general classes of hierarchical models.Broader significance and importance: Object recognition has many important practical applications, including in robotics, human-computer interaction, image retrieval, security systems and medical image analysis. Research in object recognition can also play an important role in our understanding of human perception and intelligence. The proposed research will draw upon ideas from diverse areas such as computer vision, theoretical computer science, natural language understanding and mathematics.URL: http://people.cs.uchicago.edu/~pff/hierarchical
摘要标题:Career:使用层次模型的对象识别PI:Pedro Felzenszwalb机构:芝加哥大学CAREER:使用层次模型的对象识别对象识别是计算机视觉中最重要的问题之一。虽然研究人员已经在这个问题上工作了30多年,但视觉系统仍然无法识别杂乱图像中的许多常见对象。PI提出了通过开发新的层次模型和高效的识别搜索算法来解决这一问题。层次模型使用部件来表示对象,而部件本身是按照子部件定义的。此外,可以根据较小的组件递归地定义子部分。这种分层组织可以有效地对组成对象的组件之间的重要关系进行编码。层次模型的另一个重要特性是组件可以在不同的对象模型之间共享。这对于能够快速识别图像中存在的许多可能对象中的哪些是有用的。这对于从小数据集中学习模型也很重要。最后,在最一般类型的模型中,对象的结构可以由语法指定,而不是事先固定。组成物体的部件的数量可以是可变的,并且可以在可以放置在特定位置的不同部件中进行选择。所有这些方面都使得层次模型具有令人难以置信的表现力。对象识别算法通常在编码对象姿势的大空间中搜索,或者在模型特征和从图像中提取的特征之间的对应关系上搜索。PI将开发有效的优化算法来解决这些问题。这将通过利用由一般层次模型类定义的搜索空间的结构来实现。广泛的意义和重要性:目标识别有许多重要的实际应用,包括在机器人学、人机交互、图像检索、安全系统和医学图像分析中。物体识别的研究也可以在我们理解人类的感知和智能方面发挥重要作用。这项拟议的研究将借鉴计算机视觉、理论计算机科学、自然语言理解和数学等不同领域的想法。网址:http://people.cs.uchicago.edu/~pff/hierarchical
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Felzenszwalb其他文献
Convex combination belief propagation
凸组合置信传播
- DOI:
10.1016/j.amc.2022.127572 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.400
- 作者:
Anna Grim;Pedro Felzenszwalb - 通讯作者:
Pedro Felzenszwalb
Pedro Felzenszwalb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Felzenszwalb', 18)}}的其他基金
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447413 - 财政年份:2015
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Graph Cut Algorithms for Domain-specific Higher Order Priors
RI:中:协作研究:特定领域高阶先验的图割算法
- 批准号:
1161282 - 财政年份:2012
- 资助金额:
$ 16.65万 - 项目类别:
Continuing Grant
CAREER: Object Recognition with Hierarchical Models
职业:使用分层模型进行物体识别
- 批准号:
0746569 - 财政年份:2008
- 资助金额:
$ 16.65万 - 项目类别:
Continuing Grant
Collaborative Research: The Generalized A* Architecture for Perceptual Systems
协作研究:感知系统的通用 A* 架构
- 批准号:
0534820 - 财政年份:2006
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
相似海外基金
Components, Correlates and Mechanisms of Object Recognition
物体识别的组成部分、相关性和机制
- 批准号:
2316474 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Robust Three-Dimensional Pattern Recognition based on Object Oriented Data Analysis
基于面向对象数据分析的鲁棒三维模式识别
- 批准号:
23K16900 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Joint optimization of phisical encoder with object recognition model and its phathological application
物理编码器与目标识别模型的联合优化及其病理学应用
- 批准号:
23H05490 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Neural and computational mechanisms underlying robust object recognition
鲁棒物体识别背后的神经和计算机制
- 批准号:
10682285 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Object Recognition by using Deep Neural Networks for Graph Stractured Descriptions of Image Features and Aspect Views
使用深度神经网络进行图像特征和方面视图的图结构化描述的对象识别
- 批准号:
23K11175 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AUSLearn: AUtomated Sample Learning for Object Recognition
AUSLearn:用于对象识别的自动样本学习
- 批准号:
FT210100228 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
ARC Future Fellowships
Multiscale analysis of visual object recognition in the mouse
小鼠视觉对象识别的多尺度分析
- 批准号:
469984 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Operating Grants
Object State Recognition via Multi-Modal Analysis of Videos and Video Caption Sequences
通过视频和视频字幕序列的多模态分析进行对象状态识别
- 批准号:
22K21296 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
- 批准号:
2240733 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Object recognition, localization and private object interaction tracking for maintenance-free IoT
对象识别、定位和私有对象交互跟踪,实现免维护物联网
- 批准号:
22K17883 - 财政年份:2022
- 资助金额:
$ 16.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




