Radiative Thermal Conductivity of Upper Mantle and Transition Zone Minerals
上地幔和过渡带矿物的辐射热导率
基本信息
- 批准号:1215957
- 负责人:
- 金额:$ 20.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Structure and dynamics of our planet's interior depend crucially upon heat flow and thus upon the thermal conductivity of its constituents. Temperature- and pressure-dependent thermal conductivity of Earth's mantle materials, such as olivine, is an important parameter for geodynamic models of mantle convection. Thermal conductivity variations affect models of lithospheric geotherms, subduction dynamics, and the structure of lithospheric slabs. Does the mantle transition zone between a depth of 410 and 660 km act as a heat flux regulator within the Earth's upper and lower mantle? Thermal conductivities of upper mantle and transition zone minerals are poorly constrained, and there is little experimental data on the radiative part of thermal conductivity, especially at the high pressures and temperatures that exist in those regions. This experimental study aims to complement continually evolving theoretical frameworks, extend ongoing projects to all major constituents of the Earth's mantle and indirectly measure temperature-pressure variation of radiative thermal conductivity using in-situ optical spectroscopy as powerful tool. A primary goal of the project is to further our understanding of a major driving force of nature - heat flow within the Earth. This project builds upon recent in-situ optical measurements, for the first time at simultaneous high-pressure and high-temperature, studying two major transition zone phases, hydrous wadsleyite and hydrous ringwoodite. We reported large radiative thermal conductivities, which reveal an energy transmission 'window' in the infrared and visible spectral range. We found that the mantle transition zone may contribute significantly to radiative heat transfer, and we confirmed predictions that hydration may enhance radiative heat flux. The current project will extend those studies to olivine, majorite, and phase D. In addition, we plan to systematically study the effect of compositional changes (such as iron and water concentrations) on thermal conductivity properties of olivine and it's high-pressure polymorphs wadsleyite and ringwoodite. This research is of highly collaborative nature, and will take advantage of the expertise and facilities of laboratories across the nation, as well as internationally, in particular the Geophysical Laboratory of the Carnegie Institution of Washington (optical measurements), the Earth and Planetary Science and Civil and Environmental Engineering departments at Northwestern University (spectroscopy) and the Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences (syntheses). This work will illuminate a fundamentally interdisciplinary topic of deep concern to a broad audience, including mineral physicists, seismologists, geodynamicist, geochemists, and planetary scientists. Our study will provide a valuable learning experience for undergraduate students, as well as important data, which will contribute to our knowledge of heat transfer in the Earth?s interior and will help to improve geophysical models of heat flux in the Earth.
地球内部的结构和动态在很大程度上取决于热流,因此取决于其组成部分的导热系数。橄榄石等地幔物质的热导率与温度和压力有关,是建立地幔对流地球动力学模型的重要参数。热导率的变化影响着岩石圈地温模型、俯冲动力学和岩石圈板块的结构。位于410至660千米深度之间的地幔过渡带在地球上、下地幔中是否起到了热流调节器的作用?上地幔和过渡带矿物的导热系数受到的限制很小,关于导热系数的辐射部分的实验数据很少,特别是在这些地区存在的高压和高温下。这项实验研究旨在补充不断发展的理论框架,将正在进行的项目扩展到地幔的所有主要组成部分,并利用原位光学光谱作为强大的工具间接测量辐射热导率的温度-压力变化。该项目的一个主要目标是加深我们对自然的一个主要驱动力--地球内部的热流的理解。该项目建立在最近的原位光学测量的基础上,首次在同时进行高压和高温的情况下,研究了两个主要的过渡带相--水合魏斯利石和水合环木石相。我们报道了大的辐射热导率,这揭示了在红外和可见光光谱范围内的能量传输“窗口”。我们发现地幔过渡带可能对辐射换热有很大的贡献,我们证实了水合作用可能增强辐射热流的预测。目前的项目将把这些研究扩展到橄榄石、莫来石和D相。此外,我们计划系统地研究成分变化(如铁和水的浓度)对橄榄石及其高压晶型黄辉石和环杉石导热性能的影响。这项研究具有高度协作性,将利用全国和国际实验室的专门知识和设施,特别是华盛顿卡内基研究所的地球物理实验室(光学测量)、西北大学的地球和行星科学以及土木工程和环境工程系(光谱学)以及亥姆霍兹中心波茨坦-GFZ德国地球科学研究中心(综合)。这项工作将从根本上阐明一个深受广大受众关注的跨学科主题,包括矿物物理学家、地震学家、地球动力学家、地球化学家和行星科学家。我们的研究将为本科生提供宝贵的学习经验,以及重要的数据,这将有助于我们了解地球内部的热传递-S,并将有助于改进地球热流的地球物理模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvia-Monique Thomas其他文献
Sylvia-Monique Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvia-Monique Thomas', 18)}}的其他基金
Radiative Thermal Conductivity of Upper Mantle and Transition Zone Minerals
上地幔和过渡带矿物的辐射热导率
- 批准号:
1417274 - 财政年份:2014
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
相似国自然基金
Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
- 批准号:51806227
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
- 批准号:
23KJ0893 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W034751/1 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Research Grant
I-Corps: High thermal conductivity polymers and phase change materials based on graphene
I-Corps:基于石墨烯的高导热聚合物和相变材料
- 批准号:
2330247 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Standard Grant
Phonon-engineered extreme thermal conductivity of two-dimensional heterostructures
二维异质结构的声子工程极限导热率
- 批准号:
22KF0102 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W035510/1 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Research Grant
Development of In-plane thermal conductivity measurement of thin film for realizing a consistent evaluation of thermoelectric performance of thin film
开发薄膜面内热导率测量以实现薄膜热电性能的一致评估
- 批准号:
23H01361 - 财政年份:2023
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel high-strength graphene reinforced aluminum matrix composite with enhanced thermal conductivity
开发一种新型高强度石墨烯增强导热铝基复合材料
- 批准号:
559982-2021 - 财政年份:2022
- 资助金额:
$ 20.37万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developments of neutron scattering, NMR, and thermal conductivity measurement techniques for the investigations of quantum phases in high magnetic fields
用于研究高磁场中量子相的中子散射、核磁共振和热导率测量技术的发展
- 批准号:
22H00104 - 财政年份:2022
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Finding origins of the thermal conductivity lowered locally in a cell
寻找电池中局部热导率降低的根源
- 批准号:
22K19273 - 财政年份:2022
- 资助金额:
$ 20.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)