HCC: EAGER: Authoring Game AIs by Demonstration for Real-Time Strategy Games
HCC:EAGER:通过实时策略游戏演示来编写游戏 AI
基本信息
- 批准号:1216253
- 负责人:
- 金额:$ 12.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will explore novel "authoring by demonstration" techniques for real-time strategy (RTS) games. Creating rich artificial intelligence (AI) behavior sets for complex computer games requires significant engineering effort. Developers need to anticipate all imaginable circumstances that the AI may encounter within the game world. The resulting AI is often static and results in predictable behaviors, detracting from the player experience. In addition, it is difficult for average players to create AI behaviors, without significant expertise in both AI and scripting. Modeling human-like goals and behaviors required for multiplayer games with semi-autonomous avatars adds additional complexity. This potentially transformative project will develop novel learning techniques that allow users to create intelligent behaviors simply by demonstrating them. The research will be done within the domain of RTS games, as these domains pose significant challenges that must be tackled in order to scale up the learning techniques to real-world tasks.Case-based planners, hierarchical task network planners, or industry-standard behavior-tree execution engines require a library of base behaviors or methods in order to generate complete plans, which traditionally are coded by hand. The project will investigate ways to automate the process of generating such behavior libraries based on novel methods for learning strategic plans from user demonstrations. The techniques will be evaluated in the context of a case-based planning system for RTS games. RTS games are complex and involve strategic decision-making, multi-agent coordination, real-time interaction, and partially-observable environments. These properties pose significant challenges to existing AI methods for planning and learning. This research will make fundamental scientific contributions to learning, case-based reasoning, and AI for real-time strategic domains, addressing key problems in goal recognition, plan learning, and authoring support. This research will enable game designers and other non-programmers to create the behavior sets for RTS games without requiring programming knowledge. This capability has two main consequences: first, it allows game developers to create games with less effort, and second it will enable a new genre of games where players would be able to create their own AIs as part of the game play. Additionally, as RTS games are essentially domain-specific simulations, the research will support authoring of behavior sets for domains such as simulation environments for training, real-time robotic control, organizational modeling for business decision-making, or sophisticated market simulations for economics strategy or public policy. The educational impact of the project is twofold. First, the project will constitute an important advance towards easy authoring of training simulators for educational applications that require environment with complex AI behaviors. This will enable development of new educational technologies with simulators or virtual worlds. Second, the project will involve undergraduate and graduate students in all phases of the work.
本研究将探讨新颖的即时战略(RTS)游戏的“演示创作”技术。为复杂的计算机游戏创建丰富的人工智能(AI)行为集需要大量的工程工作。开发人员需要预测AI在游戏世界中可能遇到的所有可想象的情况。由此产生的AI通常是静态的,并导致可预测的行为,从而降低玩家体验。此外,如果没有在AI和脚本方面的专业知识,普通玩家很难创建AI行为。对具有半自主化身的多人游戏所需的类人目标和行为进行建模增加了额外的复杂性。这个潜在的变革性项目将开发新的学习技术,允许用户通过演示来创建智能行为。研究将在RTS游戏领域内进行,因为这些领域提出了必须解决的重大挑战,以便将学习技术扩展到现实世界的任务中。基于案例的规划器,分层任务网络规划器或行业标准的行为树执行引擎需要一个基本行为或方法库,以便生成完整的计划,传统上是手工编码。该项目将研究如何自动化的过程中产生这样的行为库的基础上,从用户演示学习战略计划的新方法。这些技术将在RTS游戏的基于案例的规划系统的背景下进行评估。RTS游戏是复杂的,涉及战略决策,多智能体协调,实时交互和部分可观察的环境。这些属性对现有的AI规划和学习方法构成了重大挑战。这项研究将为实时战略领域的学习、基于案例的推理和人工智能做出基础性的科学贡献,解决目标识别、计划学习和创作支持中的关键问题。这项研究将使游戏设计师和其他非程序员能够在不需要编程知识的情况下创建RTS游戏的行为集。这种能力有两个主要的结果:首先,它允许游戏开发人员以更少的努力创建游戏,其次,它将使一种新的游戏类型,玩家将能够创建自己的AI作为游戏的一部分。此外,由于RTS游戏本质上是特定领域的模拟,因此该研究将支持领域行为集的创作,例如用于培训的模拟环境,实时机器人控制,用于商业决策的组织建模,或用于经济战略或公共政策的复杂市场模拟。该项目的教育影响是双重的。首先,该项目将在轻松创作需要具有复杂人工智能行为的环境的教育应用程序的训练模拟器方面取得重要进展。这将使新的教育技术与模拟器或虚拟世界的发展。第二,该项目将涉及本科生和研究生在工作的所有阶段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashwin Ram其他文献
The use of explicit goals for knowledge to guide inference and learning
- DOI:
10.1007/bf00058575 - 发表时间:
1992-07-01 - 期刊:
- 影响因子:3.500
- 作者:
Ashwin Ram;Lawrence Hunter - 通讯作者:
Lawrence Hunter
GlassMail: Towards Personalised Wearable Assistant for On-the-Go Email Creation on Smart Glasses
GlassMail:迈向个性化可穿戴助理,用于在智能眼镜上创建移动电子邮件
- DOI:
10.1145/3643834.3660683 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chen Zhou;Zihan Yan;Ashwin Ram;Yue Gu;Yan Xiang;Can Liu;Yun Huang;Wei Tsang Ooi;Shengdong Zhao - 通讯作者:
Shengdong Zhao
Using content analysis to investigate the research paths chosen by scientists over time
- DOI:
10.1007/s11192-009-0061-7 - 发表时间:
2009-06-10 - 期刊:
- 影响因子:3.500
- 作者:
Chiara Franzoni;Christopher L. Simpkins;Baoli Li;Ashwin Ram - 通讯作者:
Ashwin Ram
Navigating Real-World Challenges: A Quadruped Robot Guiding System for Visually Impaired People in Diverse Environments
应对现实世界的挑战:为不同环境中的视障人士提供四足机器人引导系统
- DOI:
10.1145/3613904.3642227 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shaojun Cai;Ashwin Ram;Zhengtai Gou;Mohd Alqama Wasim Shaikh;Yu;Yingjia Wan;Kotaro Hara;Shengdong Zhao;David Hsu - 通讯作者:
David Hsu
Robust offline trained neural network for TDOA based sound source localization
用于基于 TDOA 的声源定位的鲁棒离线训练神经网络
- DOI:
10.1109/ncc.2018.8600013 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Srikanth Raj Chetupalli;Ashwin Ram;V. Sreenivas Thippur - 通讯作者:
V. Sreenivas Thippur
Ashwin Ram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashwin Ram', 18)}}的其他基金
HCC: EAGER: Authoring Game AIs by Demonstration for Real-Time Strategy Games
HCC:EAGER:通过实时策略游戏演示来编写游戏 AI
- 批准号:
1048632 - 财政年份:2010
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Incremental Case-Based Learning Through Introspective Reasoning About Knowledge Goals
通过关于知识目标的内省推理进行增量基于案例的学习
- 批准号:
9009710 - 财政年份:1990
- 资助金额:
$ 12.69万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 12.69万 - 项目类别:
Standard Grant