Inverse Problems in Microstructural Evolution of Polycrystalline Materials

多晶材料微观结构演化的反问题

基本信息

  • 批准号:
    1216433
  • 负责人:
  • 金额:
    $ 24.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The vast majority of the solid materials used in engineered systems are polycrystalline. They are composed of many single crystals joined together by a three dimensional network of internal interfaces called grain boundaries. In many cases, the performance and integrity of a material are determined by the structure of the grain-boundary network. Examples of such materials are nano-twinned copper whose strength is dominated by coherent twin boundaries; fine-scale interconnects in microelectronics whose resistivity is dominated by grain boundaries. While these material present extremely attractive properties, the fundamental mechanisms that underlie them are poorly-understood thus presenting a challenge to further development. Efforts to meet this challenge have led to new directions of research in experiment, theory, modeling and simulation. The goal of this work is to develop the mathematical tools and its software implementation and to provide a toolbox for extracting these material properties based on experimental data. The investigator and his colleagues will achieve these goals using inverse problem formulations in conjunction with recently developed experimental technique - The High Energy Diffraction Microscopy (HEDM) - to identify energy and mobility in materials ubiquitously used in applications. Grain boundary energy and mobility, which are defined on a five dimensional space, are the physical parameters that govern the evolution of grain boundaries under thermal loading where the most acceptable model is the Mullins equation. The advent of the HEDM technique opens new possibilities for probing the evolution of polycrystalline materials and will enable us the direct calculation of grain boundary velocities. This in conjunction with inverse problems governed by Mullins equation will lead us to accurate estimates of both energy and mobility. The mathematical techniques that we use in this work include Optimal Transport, Numerical solution of PDEs and Optimization Techniques for solving the inverse problems. This work deals with novel mathematical and computational approaches for meeting important challenges in materials science. In particular, understanding microstructure evolution under mechanical and thermal loading. Microstructure affects materials reliability and failure and is strongly dependent on physical parameters - the energy and mobility. We will develop techniques for accurate identification of these properties in materials of engineering applications. This is pivotal for better design and reliability of electronic, structures and combustion components. These studies will pave the road to deal with response to thermo-mechanical loading in polycrystalline materials. The applications of these results will have broader impact in essentially all the other branches of engineering where mechanical loads occur (bridges, cars, planes, MEMS devices, prostheses), as well as the study of geological materials.
工程系统中使用的绝大多数固体材料都是多晶材料。它们由许多单晶组成,由称为晶界的内部界面的三维网络连接在一起。在许多情况下,材料的性能和完整性是由晶界网络的结构决定的。这种材料的例子是纳米孪晶铜,其强度主要由相干孪晶边界决定;微电子学中电阻率受晶界支配的细尺度互连。虽然这些材料呈现出极具吸引力的特性,但其背后的基本机制尚不清楚,因此对进一步开发提出了挑战。迎接这一挑战的努力已经在实验、理论、建模和仿真方面带来了新的研究方向。本工作的目标是开发数学工具及其软件实现,并提供一个基于实验数据提取这些材料属性的工具箱。研究者和他的同事将使用反问题公式结合最近开发的实验技术-高能衍射显微镜(HEDM) -来确定应用中普遍使用的材料的能量和迁移率,以实现这些目标。晶界能和迁移率是在五维空间上定义的,是控制热载荷作用下晶界演化的物理参数,其中最可接受的模型是Mullins方程。HEDM技术的出现为探索多晶材料的演变开辟了新的可能性,并将使我们能够直接计算晶界速度。这与由Mullins方程控制的逆问题相结合,将使我们准确地估计能量和流动性。我们在这项工作中使用的数学技术包括最优传输、偏微分方程的数值解和求解逆问题的优化技术。这项工作涉及新的数学和计算方法,以满足材料科学中的重要挑战。特别是了解在机械和热载荷下的微观结构演变。微观结构影响材料的可靠性和失效,并强烈依赖于物理参数-能量和流动性。我们将开发在工程应用材料中准确识别这些特性的技术。这对于电子、结构和燃烧部件的更好设计和可靠性至关重要。这些研究将为研究多晶材料对热机械载荷的响应铺平道路。这些结果的应用将对机械载荷发生的所有其他工程分支(桥梁,汽车,飞机,MEMS设备,假肢)以及地质材料的研究产生更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shlomo Ta'asan其他文献

Multigrid method for stability problems
  • DOI:
    10.1007/bf01061286
  • 发表时间:
    1988-09-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Shlomo Ta'asan
  • 通讯作者:
    Shlomo Ta'asan
Evaluating spatial constraints in cellular assembly processes using a Monte Carlo approach
使用蒙特卡罗方法评估细胞装配过程中的空间约束
  • DOI:
    10.1385/cbb:45:2:195
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Kathleen Puskar;Shlomo Ta'asan;Russell Schwartz;Philip R. LeDuc
  • 通讯作者:
    Philip R. LeDuc

Shlomo Ta'asan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shlomo Ta'asan', 18)}}的其他基金

From Microscopic to Macroscopic: A Multiscale Numerical Approach
从微观到宏观:多尺度数值方法
  • 批准号:
    9805582
  • 财政年份:
    1998
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Studentship
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
  • 批准号:
    DP240101473
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
  • 批准号:
    23K25504
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了