SHF: Small: Pipelined and wireless ultra-low power straintronics: An acoustically clocked combinational and sequential nanomagnetic architecture
SHF:小型:管道式和无线超低功耗应变电子学:声学时钟组合和顺序纳米磁性架构
基本信息
- 批准号:1216614
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Elliptical single-domain nanomagnets with two stable magnetization orientations are far more energy-efficient as logic switches than traditional transistors. However, the method employed to switch them must be energy-efficient as well in order to build ultra-low-power nanomagnetic logic and memory paradigms. It has been theoretically shown that using multiferroic (magnetostrictive-piezoelectric) nanomagnets, whose magnetization can be flipped with strain generated by a tiny electrostatic potential applied across the piezoelectric layer, results in a remarkably energy-efficient switching scheme. It reduces the dissipation in the switching/clocking circuit by four orders of magnitude at a clock rate of ~ 1 GHz compared to other nanomagnet switching schemes. While this is attractive, an unattractive trait of nanomagnetic logic chains is that in order to build a pipelined architecture and hence retain an acceptable bit transfer rate, each magnet must be clocked individually. This necessitates contacting each magnetic with a contact line, which imposes a Herculean lithographic burden. The PIs propose to overcome this problem completely by designing and fabricating a novel acoustic scheme for clocking that allows pipelining and at the same time does not require contacts to every magnet, thereby completely lifting the lithography burden. A surface acoustic wave (SAW) launched in the substrate, and slowed down with periodically placed masses, generates strain in an array of magnets in the correct sequence for bit transfer, as long as the spacing between the magnets is one quarter of the SAW?s wavelength. With this scheme, the energy dissipation in a gate operation at room temperature can be very low. This project will: (i) design combinational and sequential logic based on acoustically clocked magnetostrictive nanomagnets acting as logic switches, as well as perform extensive simulations using the stochastic Landau-Lifshitz-Gilbert (LLG) equation to understand and optimize reliability and fault tolerance in the presence of thermal noise; (ii) experimentally demonstrate pipelined unidirectional logic flow, and (iii) develop comprehensive coupled models for the switching dynamics of nanomagnets stressed by surface acoustic wave (SAW). This research will result in a novel computational paradigm whose astonishing energy efficiency combined with very little lithographic burden could enable the production of cheap, high yield and extremely low power processors. Such processors would consume so little energy that they can be run off the energy harvested from the environment. This could open up hitherto unimaginable applications such as medically implanted processors powered only by the motion of the patient's body, or processors that monitor the structural health of bridges and buildings while being powered by vibrations caused by wind or traffic. Integration of this research with education and mentoring will result in traditional training activities such as guiding two doctoral students who will gain multidisciplinary skills in advanced nanofabrication, nanocharacterization and modeling, as well as undergraduate projects on SAW devices and nanofabrication of magnetostrictive nanomagnets that will be mentored by the PI and co-PI?s doctoral students. Other innovative outreach programs will include holding workshops on nanomagnets and computing for high school students through the Math Science Innovation Center (MSIC) and incorporating diversity into outreach programs by hosting under-represented K-12 students in summer with the help of VCUs Richmond Area Program for Minorities in Engineering (RAPME) program. These students will perform nanolithography under supervision and study the magnetic structures they create with MFM.
具有两个稳定磁化取向的椭圆形单畴纳米磁体作为逻辑开关比传统晶体管能效高得多。然而,用来切换它们的方法也必须是节能的,以便建立超低功率的纳米磁逻辑和存储范例。理论上已经证明,使用多铁性(磁致伸缩-压电)纳米磁体,其磁化强度可以随着压电层上施加的微小静电势产生的应变而反转,从而产生了一种非常节能的开关方案。与其他纳米磁开关方案相比,在~1 GHz的时钟频率下,开关/时钟电路的功耗降低了四个数量级。虽然这很吸引人,但纳米磁逻辑链的一个不吸引人的特点是,为了建立流水线结构并因此保持可接受的比特传输速率,每个磁体必须单独计时。这就需要用一根接触线来接触每个磁体,这就带来了巨大的光刻负担。PI建议通过设计和制造一种新的计时声学方案来完全克服这一问题,该方案允许流水线,同时不需要接触到每个磁铁,从而完全减轻了光刻负担。表面声波(SAW)在衬底中发射,并随着周期性放置质量而减速,只要磁体之间的间距是SAW?S波长的四分之一,就会以正确的比特传输顺序在磁体阵列中产生应变。采用这种方案,在室温条件下,栅极工作时的能量消耗可以非常低。该项目将:(I)设计基于声控磁致伸缩纳米磁铁作为逻辑开关的组合和时序逻辑,并使用随机Landau-Lifshitz-Gilbert(LLG)方程进行广泛的模拟,以了解和优化存在热噪声的可靠性和容错性;(Ii)实验演示流水线单向逻辑流程;以及(Iii)开发表面声波(SAW)应力下纳米磁铁开关动力学的全面耦合模型。这项研究将产生一种新的计算模式,其惊人的能源效率与非常少的光刻负担相结合,可以生产出廉价、高产量和极低功耗的处理器。这样的处理器消耗的能源非常少,可以利用从环境中获得的能量来运行。这可能会带来迄今无法想象的应用,比如仅由患者身体运动提供动力的医学植入处理器,或者由风或交通引起的振动提供动力的监测桥梁和建筑物结构健康的处理器。将这项研究与教育和指导相结合,将产生传统的培训活动,如指导两名博士生,他们将获得先进纳米制造、纳米表征和建模方面的多学科技能,以及将由皮?S博士生指导的声表面波器件和磁致伸缩纳米磁体纳米制造的本科生项目。其他创新的外展计划将包括通过数学科学创新中心(MSIC)为高中生举办纳米磁铁和计算研讨会,并通过VCU里士满工程少数民族地区计划(RAPME)在夏季接待代表不足的K-12学生,将多样性纳入外展计划。这些学生将在监督下进行纳米光刻,并学习他们用MFM创建的磁性结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayasimha Atulasimha其他文献
Jayasimha Atulasimha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayasimha Atulasimha', 18)}}的其他基金
ExpandQISE: Track 1: Energy Efficient Quantum Control of Robust Spin Ensemble Qubits (EQ2)
ExpandQISE:轨道 1:鲁棒自旋系综量子位的节能量子控制 (EQ2)
- 批准号:
2231356 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
- 批准号:
2152601 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
MRI: Acquisition of a Magneto Optic Kerr Effect (MOKE) Microscope for Research and Teaching
MRI:购买磁光克尔效应 (MOKE) 显微镜用于研究和教学
- 批准号:
2117646 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Collaborative Research: Energy Efficient Voltage Controlled Non-volatile Domain Wall Devices for Neural Networks
合作研究:用于神经网络的节能压控非易失性畴壁器件
- 批准号:
1954589 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Skyrmion Mediated Eenergy-efficient VCMA Switching of 2-Terminal p-MTJ Memory
SHF:小型:合作研究:Skyrmion 介导的 2 端 p-MTJ 存储器的节能 VCMA 切换
- 批准号:
1909030 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Energy Efficient Strain Assisted Spin Transfer Torque Memory
SHF:小型:合作研究:节能应变辅助自旋转移扭矩存储器
- 批准号:
1815033 - 财政年份:2018
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
CAREER: Reliable and Fault Tolerant Super Energy Efficient Nanomagnetic Computing in the Presence of Thermal Noise
职业:存在热噪声时可靠且容错的超能效纳米磁计算
- 批准号:
1253370 - 财政年份:2013
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Ultra-Low Power and Ultra-Sensitive Spintronic Nanowire Strain Sensor
超低功耗、超灵敏自旋电子纳米线应变传感器
- 批准号:
1301013 - 财政年份:2013
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
相似国自然基金
小胶质细胞通过FABP5/LXR/SREBP1轴介导的吞噬功能障碍加剧阿尔茨海默病Aβ病理的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于多重时序液滴数字CRISPR的肺癌单个小细胞外囊泡miRNAs多靶标灵敏检测新方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复制蛋白A小分子抑制剂-HAMNO调控DNA损伤修复的结构及功能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肠上皮细胞TET2/AHR/NLRP3轴经“脑肠通讯”激活mPFC小胶质细胞导致抑郁样行为的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CD200-CD200R轴调控小胶质细胞Mrp8/14释放介导抑郁症发病的作用机
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
补体C3依赖的小胶质细胞突触异常修剪介导幼龄小鼠纳米氧化铝颗粒暴露致自闭症样行为发生的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智护到家——肝癌口服靶向药物患者依从行为智能预测与管理微信小程序设计和实现
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于小目标检测与DeepSeek大模型的智能医学检测及诊疗研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于点击化学“靶标垂钓”探究小檗碱主要代谢产物-小檗红碱激活“MAPK/cPLA2通路”致肾脏毒性的分子机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于小RNA深度测序鉴定重庆地区药用植物病毒病原
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Research Grant
光干渉断層法(OCT)による表皮下小動脈・小静脈のin vivo動態観察と生理機能解明
使用光学相干断层扫描(OCT)对表皮下小动脉和小静脉进行体内动态观察和生理功能阐明
- 批准号:
24K15697 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
成人診療科における小児期発症慢性疾患患者への成人移行支援ガイドラインの作成
制定指南,支持成人临床部门患有儿童期慢性疾病的患者过渡到成年
- 批准号:
24K13986 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
バーチャルキャラクターで学ぶ小児とのコミュニケーションスキルプログラムの開発
开发一个沟通技巧项目,让孩子们学习使用虚拟角色
- 批准号:
24K13923 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
中小企業の脱炭素経営に関する支援策のデザインとイノベーション普及メカニズムの解明
中小企业脱碳管理支持措施设计及创新扩散机制阐明
- 批准号:
24K15405 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
老齢マウス心筋細胞における核小体低分子RNA(snoRNA)の機能解析
老年小鼠心肌细胞小核仁 RNA (snoRNA) 的功能分析
- 批准号:
24K14708 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
人工知能に基づく非線形高次元小標本データ解析とその社会的応用
基于人工智能的非线性高维小样本数据分析及其社会应用
- 批准号:
24K14847 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Research Grant