Collaborative Research: Energy Efficient Voltage Controlled Non-volatile Domain Wall Devices for Neural Networks

合作研究:用于神经网络的节能压控非易失性畴壁器件

基本信息

  • 批准号:
    1954589
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

As Deep Neural Networks (DNNs) are increasingly deployed in low power embedded device and Internet of Things (IoT) applications. They need to be able to learn in real time while also being energy efficient. This necessitates the use of multi-state memory which is more than the conventional binary “0” and “1” states, is non-volatile such that information is retained when power is turned off, and can be programmed with very little energy. The goal of this project is to study and demonstrate synaptic elements of a neural network, which can store the weights updated during learning using voltage-controlled magnetic domain wall (DW) devices. Information is encoded as the position of a DW in a narrow magnetic wire. Specifically, the research will focus on using the strain generated by application of a small voltage to a thin piezoelectric layer and transferred to a magnetic wire deposited on it to control DW position in an extremely energy efficient manner. This research could lead to a dense, energy efficient and robust hardware paradigm for implementing DNNs. Two graduate students, one at Virginia Commonwealth University (VCU) and one at Massachusetts Institute of Technology (MIT), will gain multidisciplinary skills in advanced nanofabrication, nano-characterization and modeling. The VCU-PI and MIT- Co-PI will incorporate domain wall technology for memory and computing in the courses they teach. The PI and Co-PI plan to host research interns in their labs recruited from outreach programs for underrepresented groups in their respective universities. The students will be trained on nanofabrication of nanomagnets and other aspects of magnetic technology. The PI and Co-PI also plans to hold nanomagnetism workshops for high school students and teachers in their Universities collaboratively. This collaborative effort between VCU and MIT work will study and demonstrate the use of racetracks comprised of magnetostrictive metals such as CoFe, where DWs are moved using Spin Orbit Torque (SOT) from an adjoining Pt layer and arrested deterministically using voltage generated strain from a piezoelectric layer underneath that modulate perpendicular magnetic anisotropy (PMA) in different regions of a racetrack. The research team further plan to explore the use of magnetostrictive Rare Earth Iron Garnets (REIG) that have lower saturation magnetization and low damping, allowing for lower SOT applied for lesser time due to large DW velocities in order to improve the energy efficiency of DW devices. The proposed work will consist of complementary materials growth, characterization, nanofabrication, advanced magnetic visualization, modeling and simulation that includes: (i) Growth of metallic ferromagnetic and insulating ferrimagnets (ii) Study of SOT-driven DW velocity in magnetostrictive racetracks and proof-of-concept demonstration of arresting SOT-driven DW motion with a voltage induced strain (iii) Performing micromagnetic modeling of domain wall motion with SOT and its control with voltage-induced strain in the presence of notches, edge effects and room temperature thermal noise and evaluating the overall performance benefit of the proposed device in implementing DNNs. The research in this project will advance the knowledge of DW dynamics under local voltage- induced variations in anisotropy, in heterostructures that exhibit rich physics of SOT and the presence of chiral DWs. It will also provide a proof-of-concept demonstration of synaptic and neuron devices that could pave the way for energy-efficient hardware implementation of DNNs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着深度神经网络(DNN)越来越多地部署在低功耗嵌入式设备和物联网(IoT)应用中。他们需要能够在真实的时间内学习,同时还要节能。这需要使用多状态存储器,其多于传统的二进制“0”和“1”状态,是非易失性的,使得当电源关闭时信息被保留,并且可以用非常少的能量进行编程。该项目的目标是研究和演示神经网络的突触元件,该元件可以使用电压控制的磁畴壁(DW)设备存储学习期间更新的权重。 信息被编码为DW在窄磁线中的位置。具体而言,研究将集中于使用通过向薄压电层施加小电压产生的应变,并将其转移到沉积在其上的磁线,以极其节能的方式控制DW位置。这项研究可能会导致一个密集,节能和强大的硬件范例,用于实现DNN。两名研究生,一个在弗吉尼亚联邦大学(VCU)和一个在马萨诸塞州理工学院(MIT),将获得先进的纳米纤维,纳米表征和建模的多学科技能。VCU-PI和MIT-Co-PI将在他们教授的课程中纳入内存和计算的域墙技术。PI和Co-PI计划在他们的实验室接待研究实习生,这些实习生是从各自大学的代表性不足的群体的外联项目中招募的。学生将接受纳米磁体的纳米制造和磁性技术的其他方面的培训。PI和Co-PI还计划在他们的大学合作为高中学生和教师举办纳米磁性研讨会。VCU和麻省理工学院之间的这项合作努力将研究和演示由磁致伸缩金属(如CoFe)组成的赛道的使用,其中DW使用自旋轨道扭矩(SOT)从相邻的Pt层移动,并使用下面的压电层产生的电压产生的应变确定性地阻止,该压电层调制赛道不同区域的垂直磁各向异性(PMA)。研究小组进一步计划探索使用具有较低饱和磁化强度和低阻尼的磁致伸缩稀土铁石榴石(REIG),由于大DW速度,允许在较短时间内应用较低的SOT,以提高DW设备的能效。拟议的工作将包括互补材料生长,表征,纳米纤维,先进的磁性可视化,建模和模拟,其中包括:(i)金属铁磁和绝缘亚铁磁体的生长(ii)磁致伸缩轨道中SOT驱动的DW速度的研究和用电压感应应变阻止SOT驱动的DW运动的概念验证演示(iii)在存在缺口、边缘效应和室温热噪声的情况下,使用SOT执行畴壁运动的微磁建模及其电压诱导应变控制,并评估所提出的器件在实现DNN方面的整体性能优势。 在这个项目中的研究将推进知识的DW动力学下的局部电压引起的各向异性的变化,在异质结构,表现出丰富的物理SOT和手性DW的存在。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Secure Logic Locking with Strain-Protected Nanomagnet Logic
具有应变保护纳米磁体逻辑的安全逻辑锁定
  • DOI:
    10.1109/dac18074.2021.9586258
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hassan, Naimul;Edwards, Alexander J.;Bhattacharya, Dhritiman;Shihab, Mustafa M.;Venkat, Varun;Zhou, Peng;Hu, Xuan;Kundu, Shamik;Kuruvila, Abraham P.;Basu, Kanad
  • 通讯作者:
    Basu, Kanad
Voltage modulated magnetic anisotropy of rare earth iron garnet thin films on a piezoelectric substrate
  • DOI:
    10.1063/5.0128842
  • 发表时间:
    2022-12-19
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Gross,Miela J.;Misba,Walid A.;Ross,Caroline A.
  • 通讯作者:
    Ross,Caroline A.
Voltage-Controlled Energy-Efficient Domain Wall Synapses With Stochastic Distribution of Quantized Weights in the Presence of Thermal Noise and Edge Roughness
  • DOI:
    10.1109/ted.2021.3111846
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    W. A. Misba;Tahmid Kaisar;Dhritiman Bhattacharya;J. Atulasimha
  • 通讯作者:
    W. A. Misba;Tahmid Kaisar;Dhritiman Bhattacharya;J. Atulasimha
Energy Efficient Learning With Low Resolution Stochastic Domain Wall Synapse for Deep Neural Networks
用于深度神经网络的低分辨率随机畴壁突触的节能学习
  • DOI:
    10.1109/access.2022.3196688
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Misba, Walid Al;Lozano, Mark;Querlioz, Damien;Atulasimha, Jayasimha
  • 通讯作者:
    Atulasimha, Jayasimha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayasimha Atulasimha其他文献

Jayasimha Atulasimha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayasimha Atulasimha', 18)}}的其他基金

ExpandQISE: Track 1: Energy Efficient Quantum Control of Robust Spin Ensemble Qubits (EQ2)
ExpandQISE:轨道 1:鲁棒自旋系综量子位的节能量子控制 (EQ2)
  • 批准号:
    2231356
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152601
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Magneto Optic Kerr Effect (MOKE) Microscope for Research and Teaching
MRI:购买磁光克尔效应 (MOKE) 显微镜用于研究和教学
  • 批准号:
    2117646
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Skyrmion Mediated Eenergy-efficient VCMA Switching of 2-Terminal p-MTJ Memory
SHF:小型:合作研究:Skyrmion 介导的 2 端 p-MTJ 存储器的节能 VCMA 切换
  • 批准号:
    1909030
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Energy Efficient Strain Assisted Spin Transfer Torque Memory
SHF:小型:合作研究:节能应变辅助自旋转移扭矩存储器
  • 批准号:
    1815033
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Reliable and Fault Tolerant Super Energy Efficient Nanomagnetic Computing in the Presence of Thermal Noise
职业:存在热噪声时可靠且容错的超能效纳米磁计算
  • 批准号:
    1253370
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Ultra-Low Power and Ultra-Sensitive Spintronic Nanowire Strain Sensor
超低功耗、超灵敏自旋电子纳米线应变传感器
  • 批准号:
    1301013
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Pipelined and wireless ultra-low power straintronics: An acoustically clocked combinational and sequential nanomagnetic architecture
SHF:小型:管道式和无线超低功耗应变电子学:声学时钟组合和顺序纳米磁性架构
  • 批准号:
    1216614
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344723
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339061
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
  • 批准号:
    2313768
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了