I-Corps: Combining Machine Vision and Crowdsourcing for Convenient and Accurate Image Annotation
I-Corps:结合机器视觉和众包,实现便捷准确的图像标注
基本信息
- 批准号:1216839
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Annotating a large body of images quickly, accurately and inexpensively would be a valuable capability in scientific, medical and other commercial applications. Machine vision is making progress in these arenas. However, accuracy is not yet sufficient for many applications. In recent years, a complementary solution has become available: crowdsourcing, that is, dynamically recruiting thousands of people to carry out an assigned task from their computer. The team's research suggests that it is possible to combine the complementary strengths of human annotators and machines into a hybrid system that is flexible, accurate, fast and inexpensive. To demonstrate effectiveness and potential commercial opportunity, the team will develop a prototype and a business model around this approach.As imaging becomes more available and storage inexpensive, the amount of image data will continue to increase. This is true for the scientific, research, geospatial information systems and consumer markets. The proposed effort will address the need to scale annotation and analysis of this data while keeping the process as inexpensive and fast as possible with today's computational power. By combining computer vision and machine learning automations with humans (both experts and non-expert annotators), the system promises to be quickly configurable and trainable across virtually any image analysis challenge.
快速、准确和廉价地注释大量图像将是科学、医学和其他商业应用中的宝贵能力。 机器视觉正在这些领域取得进展。 然而,对于许多应用来说,精度还不够。 近年来,一种补充解决方案已经出现:众包,即动态招募数千人从他们的计算机上执行指定的任务。 该团队的研究表明,有可能将人类注释者和机器的互补优势联合收割机结合到一个灵活、准确、快速和廉价的混合系统中。 为了证明其有效性和潜在的商业机会,该团队将围绕这种方法开发原型和商业模式。随着成像变得越来越可用,存储成本越来越低,图像数据量将继续增加。 科学、研究、地理空间信息系统和消费者市场都是如此。 拟议的努力将解决对这些数据进行规模化注释和分析的需求,同时利用当今的计算能力保持尽可能廉价和快速的过程。 通过将计算机视觉和机器学习自动化与人类(专家和非专家注释者)相结合,该系统有望在几乎任何图像分析挑战中快速配置和训练。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pietro Perona其他文献
Diversified Ensembling: An Experiment in Crowdsourced Machine Learning
多样化集成:众包机器学习的实验
- DOI:
10.1145/3630106.3658923 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ira Globus;Declan Harrison;Michael Kearns;Pietro Perona;Aaron Roth - 通讯作者:
Aaron Roth
Recursive 3-D Visual Motion Estimation Using Subspace Constraints
- DOI:
10.1023/a:1007930700152 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:9.300
- 作者:
Stefano Soatto;Pietro Perona - 通讯作者:
Pietro Perona
3D Reconstruction by Shadow Carving: Theory and Practical Evaluation
基于阴影雕刻的三维重建:理论与实践评估
- DOI:
10.1007/s11263-006-8323-9 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:9.300
- 作者:
Silvio Savarese;Marco Andreetto;Holly Rushmeier;Fausto Bernardini;Pietro Perona - 通讯作者:
Pietro Perona
A Closer Look at Benchmarking Self-supervised Pre-training with Image Classification
- DOI:
10.1007/s11263-025-02402-w - 发表时间:
2025-04-27 - 期刊:
- 影响因子:9.300
- 作者:
Markus Marks;Manuel Knott;Neehar Kondapaneni;Elijah Cole;Thijs Defraeye;Fernando Perez-Cruz;Pietro Perona - 通讯作者:
Pietro Perona
Local Analysis for 3D Reconstruction of Specular Surfaces - Part II
镜面 3D 重建的局部分析 - 第 II 部分
- DOI:
10.1007/3-540-47967-8_51 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Silvio Savarese;Pietro Perona - 通讯作者:
Pietro Perona
Pietro Perona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pietro Perona', 18)}}的其他基金
RI: Medium: CompCog: Automated Discovery of Macro-Variables from Raw Spatiotemporal Data
RI:中:CompCog:从原始时空数据中自动发现宏变量
- 批准号:
1564330 - 财政年份:2016
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Infinite Bayesian Networks for Hierarchical Visual Categorization
RI:小型:协作研究:用于分层视觉分类的无限贝叶斯网络
- 批准号:
0914789 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Learning Taxonomies of the Visual World
合作研究:学习视觉世界的分类法
- 批准号:
0535292 - 财政年份:2005
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
ITR: Learning and recognition of objects in sensory data.
ITR:感知数据中物体的学习和识别。
- 批准号:
0082830 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Cortical Models for Neuromorphic Engineering
神经形态工程的皮质模型
- 批准号:
9908537 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Equipment Proposal: Early Reach Plans in Parietal Cortex: Toward a Cortical Prosthetic for Arm Movements
设备提案:顶叶皮质的早期到达计划:针对手臂运动的皮质假肢
- 批准号:
9907396 - 财政年份:1999
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
ERC-CREST Partnership Towards Consumer Telepresence
ERC-CREST 合作迈向消费者远程呈现
- 批准号:
9730980 - 财政年份:1998
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Human-Computer Interaction with Virtual Social Groups
虚拟社交群体的人机交互
- 批准号:
9812714 - 财政年份:1998
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
A Real-Time Human-Coupled Maultiagent System with Reactive Social Organization, Based on Biological Principles
基于生物学原理的具有反应性社会组织的实时人机耦合智能体系统
- 批准号:
9615071 - 财政年份:1996
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
- 批准号:
22KJ2450 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
- 批准号:
10564534 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:














{{item.name}}会员




