RI: Medium: CompCog: Automated Discovery of Macro-Variables from Raw Spatiotemporal Data

RI:中:CompCog:从原始时空数据中自动发现宏变量

基本信息

  • 批准号:
    1564330
  • 负责人:
  • 金额:
    $ 110万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-15 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

Observation and careful experimentation provide the basis for scientific inquiry, which in turn guides our understanding of the world and policy decisions. Today, scientific data is collected from a vast array of sensors: satellite images and radar, neuro-imaging, microscopes, body monitoring, socio-economic indicators, to name just a few. While models and theories were traditionally derived via careful handcrafting by domain experts, the new data deluge makes direct human analysis impossible. We need intelligent machines that can process vast amounts of sensory data into interpretable quantities that provide actionable information. This project will develop machines that will be able to learn on their own, purely from experience, produce and test hypotheses on causes and effects in complex dynamic scenes, and better collaborate with human scientists and analysts. For generality, we will develop and test our theory in two different domains. Amongst the immediate benefits of our project are methods for discovering the causal relationship between genes, brains and behavior. Our objective is to develop theory and practical algorithms for automatically interpreting a dynamic scene containing interacting agents. This will involve automatically identifying the main spatial locations, the objects, the actors, their actions and goals, and their relations to one another. The output is a description of the events, and hypotheses on the actors? goals, cause-effect relationships and likely developments. The key technical questions that we will tackle are how to infer semantically meaningful "macro" variables (i.e. agents' role and goals, actions, objects, special locations) directly from raw sensory data (mostly video), how to infer the causal relationships among such variables, and how to adaptively plan new experiments, including collecting feedback from human experts, to resolve ambiguities in the model. The intellectual merit of our project lies in developing an end-to-end, pixels-to-causes approach to the automatic analysis of dynamic scenes. To this end, we will integrate, build upon, and transcend the capabilities of extant "low-level" correlational machine learning and "high-level" causal inference approaches, combined with interactive learning approaches to sequential experimental design.
观察和仔细的实验为科学探究提供了基础,而科学探究反过来又指导我们对世界的理解和政策决定。今天,科学数据是从大量的传感器收集的:卫星图像和雷达,神经成像,显微镜,身体监测,社会经济指标,仅举几例。虽然模型和理论传统上是由领域专家精心手工制作的,但新的数据洪流使直接的人类分析变得不可能。我们需要智能机器,可以将大量的感官数据处理成可解释的数量,提供可操作的信息。该项目将开发能够自主学习的机器,纯粹从经验中学习,在复杂的动态场景中产生和测试因果关系的假设,并更好地与人类科学家和分析师合作。一般来说,我们将在两个不同的领域发展和测试我们的理论。我们项目的直接好处之一是发现基因、大脑和行为之间因果关系的方法。我们的目标是开发理论和实用的算法,自动解释一个动态的场景包含交互代理。这将涉及自动识别主要的空间位置、对象、行为者、他们的行动和目标以及他们之间的关系。输出是对事件的描述,以及对演员的假设?目标、因果关系和可能的发展。我们将解决的关键技术问题是如何直接从原始感知数据(主要是视频)推断语义上有意义的“宏观”变量(即代理的角色和目标,动作,对象,特殊位置),如何推断这些变量之间的因果关系,以及如何自适应地计划新的实验,包括收集来自人类专家的反馈,以解决模型中的歧义。 我们项目的智力价值在于开发一种端到端,像素到原因的方法来自动分析动态场景。为此,我们将整合,构建和超越现存的“低级”相关机器学习和“高级”因果推理方法的能力,结合交互式学习方法进行顺序实验设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pietro Perona其他文献

Diversified Ensembling: An Experiment in Crowdsourced Machine Learning
多样化集成:众包机器学习的实验
Recursive 3-D Visual Motion Estimation Using Subspace Constraints
3D Reconstruction by Shadow Carving: Theory and Practical Evaluation
基于阴影雕刻的三维重建:理论与实践评估
  • DOI:
    10.1007/s11263-006-8323-9
  • 发表时间:
    2006-06-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Silvio Savarese;Marco Andreetto;Holly Rushmeier;Fausto Bernardini;Pietro Perona
  • 通讯作者:
    Pietro Perona
A Closer Look at Benchmarking Self-supervised Pre-training with Image Classification
  • DOI:
    10.1007/s11263-025-02402-w
  • 发表时间:
    2025-04-27
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Markus Marks;Manuel Knott;Neehar Kondapaneni;Elijah Cole;Thijs Defraeye;Fernando Perez-Cruz;Pietro Perona
  • 通讯作者:
    Pietro Perona
Local Analysis for 3D Reconstruction of Specular Surfaces - Part II
镜面 3D 重建的局部分析 - 第 II 部分

Pietro Perona的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pietro Perona', 18)}}的其他基金

I-Corps: Combining Machine Vision and Crowdsourcing for Convenient and Accurate Image Annotation
I-Corps:结合机器视觉和众包,实现便捷准确的图像标注
  • 批准号:
    1216839
  • 财政年份:
    2012
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Infinite Bayesian Networks for Hierarchical Visual Categorization
RI:小型:协作研究:用于分层视觉分类的无限贝叶斯网络
  • 批准号:
    0914789
  • 财政年份:
    2009
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Taxonomies of the Visual World
合作研究:学习视觉世界的分类法
  • 批准号:
    0535292
  • 财政年份:
    2005
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
3d Perception of Specular Surfaces
镜面表面的 3D 感知
  • 批准号:
    0413312
  • 财政年份:
    2005
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
ITR: Learning and recognition of objects in sensory data.
ITR:感知数据中物体的学习和识别。
  • 批准号:
    0082830
  • 财政年份:
    2000
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Cortical Models for Neuromorphic Engineering
神经形态工程的皮质模型
  • 批准号:
    9908537
  • 财政年份:
    2000
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Equipment Proposal: Early Reach Plans in Parietal Cortex: Toward a Cortical Prosthetic for Arm Movements
设备提案:顶叶皮质的早期到达计划:针对手臂运动的皮质假肢
  • 批准号:
    9907396
  • 财政年份:
    1999
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
ERC-CREST Partnership Towards Consumer Telepresence
ERC-CREST 合作迈向消费者远程呈现
  • 批准号:
    9730980
  • 财政年份:
    1998
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Human-Computer Interaction with Virtual Social Groups
虚拟社交群体的人机交互
  • 批准号:
    9812714
  • 财政年份:
    1998
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
A Real-Time Human-Coupled Maultiagent System with Reactive Social Organization, Based on Biological Principles
基于生物学原理的具有反应性社会组织的实时人机耦合智能体系统
  • 批准号:
    9615071
  • 财政年份:
    1996
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了