Math: Algorithms for Parametric (Comprehensive) Groebner Computations
数学:参数(综合)Groebner 计算算法
基本信息
- 批准号:1217054
- 负责人:
- 金额:$ 29.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algorithms for solving multivariate polynomial systems will be investigated with a particular focus on parametric polynomial systems in which indeterminates are classified into two disjoint subsets-- one consisting of parameters and other consisting of variables. Such polynomial systems are used to model or approximate problems generically in many application domains, where a generic problem has parameters such that for every parameter value, the generic problem becomes specific. The objective is to study the structure of solutions for different specializations of parameters. This research project will investigate the use of the framework of Groebner basis computations for this analysis. Particularly, comprehensive Groebner bases and comprehensive Groebner systems are elegant mathematical objects which represent all the solutions of a parametric polynomial system for all possible parameter values. The project will explore theoretical foundations as well as develop efficient and effective algorithms for computing comprehensive Groebner systems and comprehensive Groebner bases for parametric polynomial systems. The concept of a minimal canonical comprehensive Groebner basis will be developed and its significance will be explored for studying problems in polynomial ideal theory and algebraic geometry. An efficient algorithm to compute a minimal canonical comprehensive Groebner basis will be investigated. Parametric multivariate polynomial systems are a powerful tool for modeling many problems in various application domains. The problems of (i) determining whether a given polynomial equation system has a common solution, (ii) deriving conditions on symbolic parameters appearing in polynomial equations such that they have a common solution, and (iii) developing an efficient representation of common solutions are of fundamental significance. These problems arise in diverse applications, including engineering design, robotics, inverse kinematics, graphics, solid modeling, CAD-CAM design, geometric construction, drug-design, control theory, and program verification and analysis. Given that many problems in various application domains can be generically modeled using parametric polynomials, fast methods for solving parametric polynomial systems are useful for those applications. The proposed research will lead to the development of theory and algorithms related to comprehensive Groebner computations and investigation of their effective use in many application domains, with a particular focus on geometric design and modeling, as well as program analysis and verification. The algorithms developed during the research project will be implemented in computer algebra systems including Magma and Singular, and experimented with on a variety of problems arising from different application domains. Heuristics will be developed and analyzed to make these algorithms and their implementations efficient.
求解多元多项式系统的算法将特别关注参数多项式系统,其中不定数被分为两个不相交的子集-一个由参数组成,另一个由变量组成。在许多应用领域中,这种多项式系统用于对问题进行一般建模或近似,其中一般问题具有参数,因此对于每个参数值,一般问题变得特定。目的是研究不同参数专门化的解的结构。本研究项目将研究使用格罗布纳基础计算框架进行分析。特别是,综合格罗布纳基和综合格罗布纳系统是一种优雅的数学对象,它代表了一个参数多项式系统对所有可能参数值的所有解。该项目将探索计算综合Groebner系统和参数多项式系统的综合Groebner基的理论基础,并开发高效的算法。本文将发展最小正则综合格罗布纳基的概念,并探讨其在多项式理想理论和代数几何研究中的意义。研究了一种计算最小正则综合格罗布纳基的有效算法。参数多元多项式系统是对各种应用领域中许多问题进行建模的有力工具。(i)确定一个给定的多项式方程系统是否有一个公共解,(ii)推导多项式方程中出现的符号参数的条件,使它们有一个公共解,以及(iii)开发公共解的有效表示的问题具有根本意义。这些问题出现在不同的应用中,包括工程设计、机器人、逆运动学、图形学、实体建模、CAD-CAM设计、几何构造、药物设计、控制理论和程序验证与分析。考虑到各种应用领域中的许多问题都可以使用参数多项式进行一般建模,快速求解参数多项式系统的方法对这些应用非常有用。拟议的研究将导致与综合格罗布纳计算相关的理论和算法的发展,并研究它们在许多应用领域的有效使用,特别关注几何设计和建模,以及程序分析和验证。在研究项目中开发的算法将在包括Magma和Singular在内的计算机代数系统中实现,并在不同应用领域产生的各种问题上进行实验。将开发和分析启发式算法,以使这些算法及其实现高效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deepak Kapur其他文献
REDUCING STEREOTYPE THREAT EFFECTS Creating a Critical Mass Eliminates the Effects of Stereotype Threat on Women ’ s Mathematical Performance Declaration of Competing
减少刻板印象威胁影响 创造临界质量消除刻板印象威胁对女性数学成绩的影响 竞赛宣言
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nidhi Singhal;Deepak Kapur - 通讯作者:
Deepak Kapur
Theoretical Aspects of Computing – ICTAC 2017
计算的理论方面 – ICTAC 2017
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Hung;Deepak Kapur - 通讯作者:
Deepak Kapur
2. ROLE OF USER FEES IN ETHIOPIA: A CASE STUD Y OF JIMMA UNIVERSIT Y SPECIALIZED HOSPIT AL, SOUTH WEST ETHIO PIA
2. 使用费在埃塞俄比亚的作用:埃塞俄比亚西南季玛大学专科医院案例研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
In Gulf Countries;Imran Hameed;N. Qazi;D. Nair;K. Tushune;T. Varghese;Qaiser Rafique Yasser;Saundarya Rajesh;Deepak Kapur;Abebaw Kassie Gualu;K. Priya;K. Chandrasekar;M. D. Prasad;B. Shekhar - 通讯作者:
B. Shekhar
Dependency Pairs for Equational Rewriting
方程重写的依赖对
- DOI:
10.1007/3-540-45127-7_9 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
J. Giesl;Deepak Kapur - 通讯作者:
Deepak Kapur
New uses of linear arithmetic in automated theorem proving by induction
- DOI:
10.1007/bf00244459 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Deepak Kapur;M. Subramaniam - 通讯作者:
M. Subramaniam
Deepak Kapur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deepak Kapur', 18)}}的其他基金
AF: Small: Comprehensive Groebner, Parametric GCD Computations and Real Geometric Reasoning
AF:小:综合 Groebner、参数 GCD 计算和真实几何推理
- 批准号:
1908804 - 财政年份:2019
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Generating Octagonal Invariants using Quantifier Elimination Heuristics
使用量词消除启发法生成八边形不变量
- 批准号:
1248069 - 财政年份:2012
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
TC: Medium: Collaborative Research: Unification Laboratory: Increasing the Power of Cryptographic Protocol Analysis Tools
TC:媒介:协作研究:统一实验室:提高密码协议分析工具的能力
- 批准号:
0905222 - 财政年份:2009
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Analyzing Polynomial Systems using Cayley-Dixon Resultant Matrices based on Support Hull
使用基于支撑船体的 Cayley-Dixon 结果矩阵分析多项式系统
- 批准号:
0729097 - 财政年份:2008
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Collaborative Research: CT-M: Unification Laboratory for Cryptographic Protocol Analysis
合作研究:CT-M:密码协议分析统一实验室
- 批准号:
0831462 - 财政年份:2008
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Collaborative Research: SAIL: An Integration of SAT Solver and Inductive Prover
合作研究:SAIL:SAT 求解器和归纳证明器的集成
- 批准号:
0541315 - 财政年份:2006
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
2003 Dagstuhl Seminar on Deduction
2003 Dagstuhl 演绎研讨会
- 批准号:
0314135 - 财政年份:2003
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Polynomial Manipulation using Dixon Resultant Formulation
使用 Dixon 结果公式进行多项式运算
- 批准号:
0203051 - 财政年份:2002
- 资助金额:
$ 29.95万 - 项目类别:
Continuing Grant
ITR: Integrating Induction Schemes into Decision Procedures
ITR:将归纳方案纳入决策程序
- 批准号:
0113611 - 财政年份:2001
- 资助金额:
$ 29.95万 - 项目类别:
Continuing Grant
Collaborative Research on Semantic Unification and its Applications
语义统一及其应用的协作研究
- 批准号:
0098114 - 财政年份:2001
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
相似海外基金
Study of non-parametric reconstruction algorithms of gravitational wave for real-time detection
实时探测引力波非参数重构算法研究
- 批准号:
22KF0329 - 财政年份:2023
- 资助金额:
$ 29.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
$ 29.95万 - 项目类别:
Standard Grant
Semi-parametric mixture models: algorithms, prediction, fit assessment, model comparison
半参数混合模型:算法、预测、拟合评估、模型比较
- 批准号:
RGPIN-2020-07079 - 财政年份:2022
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, prediction, fit assessment, model comparison
半参数混合模型:算法、预测、拟合评估、模型比较
- 批准号:
RGPIN-2020-07079 - 财政年份:2021
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual
Increasing Parameters of Phaseless Parametric Inversion Algorithms applied to Grain Bin Imaging
增加参数的无相参数反演算法应用于粮仓成像
- 批准号:
565371-2021 - 财政年份:2021
- 资助金额:
$ 29.95万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Semi-parametric mixture models: algorithms, prediction, fit assessment, model comparison
半参数混合模型:算法、预测、拟合评估、模型比较
- 批准号:
RGPIN-2020-07079 - 财政年份:2020
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison and*checking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和*检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2018
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison and checking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2017
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison andchecking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2016
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual
Semi-parametric mixture models: algorithms, model comparison and checking, and joint longitudinal models for disease progression
半参数混合模型:算法、模型比较和检查以及疾病进展的联合纵向模型
- 批准号:
RGPIN-2014-05414 - 财政年份:2015
- 资助金额:
$ 29.95万 - 项目类别:
Discovery Grants Program - Individual