Analyzing Polynomial Systems using Cayley-Dixon Resultant Matrices based on Support Hull

使用基于支撑船体的 Cayley-Dixon 结果矩阵分析多项式系统

基本信息

  • 批准号:
    0729097
  • 负责人:
  • 金额:
    $ 21.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-02-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Many problems in application domains including engineering design, robotics, inverse kinematics, graphics, solid modeling, CAD-CAM design, geometric construction, molecular biology, drug-design, and control theory, can be modeled using parametric polynomial systems with many variables. Solving multivariate polynomial systems, especially symbolically, is however a major challenge. Whenever successful, symbolic methods have considerable advantage over numerical methods, since a symbolic solution has to be computed only once whereas numerical solutions must be computed every time parameter values change. Experimental and theoretical analyses indicate that the generalized Cayley-Dixon resultant formulation developed by Kapur, Saxena and Yang is very effective in practice for solving a large class of such parametric polynomial systems arising in practical applications. A particularly attractive feature of this formulation is its problem-adaptiveness: it implicitly exploits the sparse structure and non-genericity of a polynomial system.Kapur and Chtcherba have identified a geometric object, the support hull, characterizing the terms appearing in a polynomial system (which is related to the associated convex hull) as a powerful concept. Time and space complexity as well as whether the resultant is computed exactly or not using the Cayley-Dixon resultant formulation, are governed by the support hull. Further, the problem-adaptiveness feature of the Cayley-Dixon resultant formulation appears also to be due to the support hull and the nature of the nonzero coefficients of the terms in the support hull. This project will use the support hull as the key technical concept for developing new methods for computing resultants and investigating symbolic-numeric methods. Techniques will be developed to extract resultants efficiently for mixed non-generic polynomial systems (where polynomials have different subsets of terms) since problems arising from applications are mixed. Geometric methods that approximate the support hull of a polynomial system by well behaved support hulls for which the resultant can be computed easily, will be developed. Incremental construction of dialytic resultant matrices guided by support hulls will be explored. These approaches are expected to generate resultant matrices of much smaller size, leading to significant gains in computational performance and solutions of problems beyond the reach of existing methods.
在工程设计、机器人学、逆运动学、图形学、实体建模、CAD-CAM设计、几何构造、分子生物学、药物设计和控制理论等应用领域中的许多问题都可以使用多变量参数多项式系统建模。 解决多元多项式系统,特别是象征性的,然而,是一个重大的挑战。每当成功时,符号方法比数值方法具有相当大的优势,因为符号解只需计算一次,而数值解必须在每次参数值变化时计算。实验和理论分析表明,Kapur,Saxena和Yang提出的广义Cayley-Dixon结式对于求解实际应用中出现的一类参数多项式系统是非常有效的.一个特别有吸引力的特点,这制定是它的问题适应性:它隐含地利用稀疏结构和非genericity的多项式system.Kapur和Chtcherba确定了一个几何对象,支持船体,表征出现在多项式系统(这是相关的凸船体)作为一个强大的概念。时间和空间复杂度以及是否使用Cayley-Dixon合成公式精确计算合成,都由支持船体决定。此外,Cayley-Dixon合成公式的问题适应性特征似乎也是由于支持船体和支持船体中项的非零系数的性质。 该项目将使用支撑船体作为开发计算结果的新方法和研究符号-数值方法的关键技术概念。技术将被开发,以有效地提取混合非通用多项式系统(多项式有不同的子集的条款),因为应用程序所产生的问题是混合的结果。几何方法,近似的支持船体的多项式系统的良好性能的支持壳,其结果可以很容易地计算,将开发。 将探索由支持壳引导的透析合成矩阵的增量构建。这些方法预计将产生小得多的大小的结果矩阵,导致显着的增益在计算性能和解决方案的问题超出了现有的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deepak Kapur其他文献

REDUCING STEREOTYPE THREAT EFFECTS Creating a Critical Mass Eliminates the Effects of Stereotype Threat on Women ’ s Mathematical Performance Declaration of Competing
减少刻板印象威胁影响 创造临界质量消除刻板印象威胁对女性数学成绩的影响 竞赛宣言
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nidhi Singhal;Deepak Kapur
  • 通讯作者:
    Deepak Kapur
Theoretical Aspects of Computing – ICTAC 2017
计算的理论方面 – ICTAC 2017
2. ROLE OF USER FEES IN ETHIOPIA: A CASE STUD Y OF JIMMA UNIVERSIT Y SPECIALIZED HOSPIT AL, SOUTH WEST ETHIO PIA
2. 使用费在埃塞俄比亚的作用:埃塞俄比亚西南季玛大学专科医院案例研究
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    In Gulf Countries;Imran Hameed;N. Qazi;D. Nair;K. Tushune;T. Varghese;Qaiser Rafique Yasser;Saundarya Rajesh;Deepak Kapur;Abebaw Kassie Gualu;K. Priya;K. Chandrasekar;M. D. Prasad;B. Shekhar
  • 通讯作者:
    B. Shekhar
Dependency Pairs for Equational Rewriting
方程重写的依赖对
  • DOI:
    10.1007/3-540-45127-7_9
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Giesl;Deepak Kapur
  • 通讯作者:
    Deepak Kapur
New uses of linear arithmetic in automated theorem proving by induction
  • DOI:
    10.1007/bf00244459
  • 发表时间:
    1996-03-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Deepak Kapur;M. Subramaniam
  • 通讯作者:
    M. Subramaniam

Deepak Kapur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deepak Kapur', 18)}}的其他基金

AF: Small: Comprehensive Groebner, Parametric GCD Computations and Real Geometric Reasoning
AF:小:综合 Groebner、参数 GCD 计算和真实几何推理
  • 批准号:
    1908804
  • 财政年份:
    2019
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Generating Octagonal Invariants using Quantifier Elimination Heuristics
使用量词消除启发法生成八边形不变量
  • 批准号:
    1248069
  • 财政年份:
    2012
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Math: Algorithms for Parametric (Comprehensive) Groebner Computations
数学:参数(综合)Groebner 计算算法
  • 批准号:
    1217054
  • 财政年份:
    2012
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
TC: Medium: Collaborative Research: Unification Laboratory: Increasing the Power of Cryptographic Protocol Analysis Tools
TC:媒介:协作研究:统一实验室:提高密码协议分析工具的能力
  • 批准号:
    0905222
  • 财政年份:
    2009
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CT-M: Unification Laboratory for Cryptographic Protocol Analysis
合作研究:CT-M:密码协议分析统一实验室
  • 批准号:
    0831462
  • 财政年份:
    2008
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SAIL: An Integration of SAT Solver and Inductive Prover
合作研究:SAIL:SAT 求解器和归纳证明器的集成
  • 批准号:
    0541315
  • 财政年份:
    2006
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
2003 Dagstuhl Seminar on Deduction
2003 Dagstuhl 演绎研讨会
  • 批准号:
    0314135
  • 财政年份:
    2003
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Polynomial Manipulation using Dixon Resultant Formulation
使用 Dixon 结果公式进行多项式运算
  • 批准号:
    0203051
  • 财政年份:
    2002
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Continuing Grant
ITR: Integrating Induction Schemes into Decision Procedures
ITR:将归纳方案纳入决策程序
  • 批准号:
    0113611
  • 财政年份:
    2001
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Continuing Grant
Collaborative Research on Semantic Unification and its Applications
语义统一及其应用的协作研究
  • 批准号:
    0098114
  • 财政年份:
    2001
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
CNS Core: Small: Schedulability Analysis of Safety-Critical Real-Time Systems: Beyond Pseudo-polynomial Time Algorithms
CNS 核心:小型:安全关键实时系统的可调度性分析:超越伪多项式时间算法
  • 批准号:
    2141256
  • 财政年份:
    2022
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Standard Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
  • 批准号:
    RGPIN-2020-04276
  • 财政年份:
    2022
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2022
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
  • 批准号:
    RGPIN-2020-04276
  • 财政年份:
    2021
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2021
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
Symbolic-numeric algorithms and applications for systems of differential polynomial equations and inequalities
微分多项式方程组和不等式组的符号数值算法和应用
  • 批准号:
    RGPIN-2016-06458
  • 财政年份:
    2021
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
  • 批准号:
    RGPIN-2020-04276
  • 财政年份:
    2020
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2020
  • 资助金额:
    $ 21.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了