Polynomial Manipulation using Dixon Resultant Formulation
使用 Dixon 结果公式进行多项式运算
基本信息
- 批准号:0203051
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2006-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT0203051Dr. Deepak KapurU of New MexicoThe problems of (i)determining whether a given polynomial equation system has a common solution, (ii)deriving conditions on parameters appearing n polynomial equations,such that they have a common solution,as well as (iii)developing an e .cient representation of common solutions are of fundamental significance. These problems arise in numerous applications:engineering and design, robotics, universe kinematics, manufacturing, design and analysis of nano devices in nanotechnology, image understanding, graphics,solid modeling,implicitization,CAD-CAM design,geometric construction,design,and control theory. Multivariate resultants and related elimination methods have been found useful for addressing these problems. The resultant of a polynomial equation system gives the necessary and su .cient condition on itsparameters for a common solution to exist. When there are parameters in a polynomial system,numerical techniques often do not apply. Investigations of efficient elimination methods are also of considerable importance in algebraic geometry,polynomial ideal theory and other related aspects of computational algebra and symbolic computation.Experimental and theoretical analysis indicates that the generalized Dixon formulation developed by Kapur,Saxena and Yang,based on Bezout-Cayley-Dixon methods and efficient elimination/resultant method. A particularly attractive feature of the generalized Dixon formulation is that t s problem-adaptive since timplicitly exploits the sparse structure of the associated polynomial system as well as its non-genericity.
ABSTRACT0203051Dr。新墨西哥的Deepak KapurU的问题(i)确定一个给定的多项式方程系统是否有一个共同的解,(ii)推导出现在n个多项式方程的参数的条件,使它们有一个共同的解,以及(iii)发展一个e。共同解的客户表示具有根本意义。这些问题出现在许多应用中:工程和设计、机器人、宇宙运动学、制造、纳米技术中纳米器件的设计和分析、图像理解、图形学、实体建模、隐式化、CAD-CAM设计、几何构造、设计和控制理论。多元结果和相关的消去方法被发现对解决这些问题很有用。一个多项式方程组的结式给出了必要和su。一个通用的解决方案存在的参数的客户条件。当多项式系统中有参数时,数值技术通常不适用。有效消去方法的研究在代数几何、多项式理想理论以及计算代数和符号计算的其他相关方面也具有相当重要的意义。实验和理论分析表明,Kapur、Saxena和Yang基于Bezout-Cayley-Dixon方法和有效消去/合成法提出了广义Dixon公式。广义Dixon公式的一个特别吸引人的特征是它具有自适应问题,因为它隐含地利用了相关多项式系统的稀疏结构以及它的非泛型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deepak Kapur其他文献
REDUCING STEREOTYPE THREAT EFFECTS Creating a Critical Mass Eliminates the Effects of Stereotype Threat on Women ’ s Mathematical Performance Declaration of Competing
减少刻板印象威胁影响 创造临界质量消除刻板印象威胁对女性数学成绩的影响 竞赛宣言
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nidhi Singhal;Deepak Kapur - 通讯作者:
Deepak Kapur
Theoretical Aspects of Computing – ICTAC 2017
计算的理论方面 – ICTAC 2017
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Hung;Deepak Kapur - 通讯作者:
Deepak Kapur
2. ROLE OF USER FEES IN ETHIOPIA: A CASE STUD Y OF JIMMA UNIVERSIT Y SPECIALIZED HOSPIT AL, SOUTH WEST ETHIO PIA
2. 使用费在埃塞俄比亚的作用:埃塞俄比亚西南季玛大学专科医院案例研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
In Gulf Countries;Imran Hameed;N. Qazi;D. Nair;K. Tushune;T. Varghese;Qaiser Rafique Yasser;Saundarya Rajesh;Deepak Kapur;Abebaw Kassie Gualu;K. Priya;K. Chandrasekar;M. D. Prasad;B. Shekhar - 通讯作者:
B. Shekhar
Dependency Pairs for Equational Rewriting
方程重写的依赖对
- DOI:
10.1007/3-540-45127-7_9 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
J. Giesl;Deepak Kapur - 通讯作者:
Deepak Kapur
New uses of linear arithmetic in automated theorem proving by induction
- DOI:
10.1007/bf00244459 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Deepak Kapur;M. Subramaniam - 通讯作者:
M. Subramaniam
Deepak Kapur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deepak Kapur', 18)}}的其他基金
AF: Small: Comprehensive Groebner, Parametric GCD Computations and Real Geometric Reasoning
AF:小:综合 Groebner、参数 GCD 计算和真实几何推理
- 批准号:
1908804 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Generating Octagonal Invariants using Quantifier Elimination Heuristics
使用量词消除启发法生成八边形不变量
- 批准号:
1248069 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Math: Algorithms for Parametric (Comprehensive) Groebner Computations
数学:参数(综合)Groebner 计算算法
- 批准号:
1217054 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
TC: Medium: Collaborative Research: Unification Laboratory: Increasing the Power of Cryptographic Protocol Analysis Tools
TC:媒介:协作研究:统一实验室:提高密码协议分析工具的能力
- 批准号:
0905222 - 财政年份:2009
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Analyzing Polynomial Systems using Cayley-Dixon Resultant Matrices based on Support Hull
使用基于支撑船体的 Cayley-Dixon 结果矩阵分析多项式系统
- 批准号:
0729097 - 财政年份:2008
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: CT-M: Unification Laboratory for Cryptographic Protocol Analysis
合作研究:CT-M:密码协议分析统一实验室
- 批准号:
0831462 - 财政年份:2008
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: SAIL: An Integration of SAT Solver and Inductive Prover
合作研究:SAIL:SAT 求解器和归纳证明器的集成
- 批准号:
0541315 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
2003 Dagstuhl Seminar on Deduction
2003 Dagstuhl 演绎研讨会
- 批准号:
0314135 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
ITR: Integrating Induction Schemes into Decision Procedures
ITR:将归纳方案纳入决策程序
- 批准号:
0113611 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research on Semantic Unification and its Applications
语义统一及其应用的协作研究
- 批准号:
0098114 - 财政年份:2001
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似海外基金
Formation of thin liquid film and manipulation of convection using active control of surface tension
利用表面张力的主动控制形成液膜并控制对流
- 批准号:
23K03690 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of tangible user interface using ultrasonic microfluidic manipulation platform
使用超声波微流体操纵平台开发有形用户界面
- 批准号:
23K16916 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Melanopsin Cell Response Characteristics in Humans Using Blind Spot Stimulation and Light Manipulation
使用盲点刺激和光操纵分析人类黑视蛋白细胞反应特征
- 批准号:
23K09035 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HCC: Small: 3DStylus: User-Guided Shape Manipulation using Neural Priors
HCC:小型:3DStylus:使用神经先验进行用户引导的形状操作
- 批准号:
2304481 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Evolution of the Cerebral Cortex by Experimental Manipulation Using Cell Cycle Withdrawal Delay
利用细胞周期撤回延迟进行实验操作大脑皮层的进化
- 批准号:
23K18169 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Establishment of mega-base synthetic genome manipulation using next generation genome engineering tools.
使用下一代基因组工程工具建立巨型碱基合成基因组操作。
- 批准号:
23K17990 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Exploring the mechanisms of primate anxiety using virtual reality and chemogenetic manipulation
利用虚拟现实和化学遗传学操作探索灵长类动物焦虑的机制
- 批准号:
23K12943 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Biomimetic Approach based on Tactile Sensing for Stable Grasp and Manipulation using Biomechatronic Hand Prostheses and Assistive Robots
基于触觉传感的仿生方法,使用生物机电假手和辅助机器人实现稳定抓取和操作
- 批准号:
RGPIN-2022-05226 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
A Biomimetic Approach based on Tactile Sensing for Stable Grasp and Manipulation using Biomechatronic Hand Prostheses and Assistive Robots
基于触觉传感的仿生方法,使用生物机电假手和辅助机器人实现稳定抓取和操作
- 批准号:
DGECR-2022-00036 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Launch Supplement
PFI-RP: Robotic Manipulation of Small, Delicate, and Curved Objects Using Tunable Dry Adhesion
PFI-RP:使用可调干粘附力对小型、精致和弯曲物体进行机器人操作
- 批准号:
2141089 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant