Collaborative Research: Innovative Integrative Strategies for Nonlinear Parametric Inversion

合作研究:非线性参数反演的创新综合策略

基本信息

项目摘要

The investigators aim to reduce drastically the costs of numerical inversion (as occurs, for example, in medical imaging) by blending new parametric level-set approaches and nonlinear least squares methods together with innovations in linear solvers, preconditioning, and model reduction of parameterized systems. Four strategies are combined to reduce the computation necessary while not degrading accuracy of the solution. First, the dimension of the inverse problem is drastically reduced by developing low-order parametric inversion methods replacing the usual voxel-based inversion. Second, the optimization underlying parametric inversion incorporates novel nonlinear least-squares solvers specifically designed to deal with ill-conditioned Jacobians. Third, the high cost of solving many large forward problems is reduced through new model reduction techniques that are particularly well-suited to the structure of the inverse problems under consideration. Fourth, the high costs of computing reduced models and solving forward problems is reduced by innovations in Krylov subspace recycling and efficient reuse of preconditioners for parameterized linear systems. The inverse problems studied here involve recovery of images describing how unknown quantities of diagnostic interest (such as electrical conductivity) are distributed throughout a given medium (such as human tissue or soil). These images can reveal the presence or absence of anomalies, such as tumors in human tissue or contaminant plumes in soil. The computational extraction of high quality images from noisy surface measurements in reasonable time is a very difficult task. As rapid advances in technology make it possible to take vastly more measurements, computational bottlenecks become ever more acute, impeding innovation in medical and other areas of imaging. This project aims to combine innovations in diverse fields within computational linear algebra, systems theory, and optimization to create dramatically improved strategies for image extraction.
研究人员的目标是通过将新的参数水平集方法和非线性最小二乘法与线性求解器,预处理和参数化系统模型简化的创新相结合,大幅降低数值反演的成本(例如,在医学成像中)。四种策略相结合,以减少必要的计算,而不降低精度的解决方案。首先,通过开发低阶参数反演方法取代通常的基于体素的反演,大大降低了反问题的维数。其次,参数反演的优化结合了专门设计用于处理病态雅可比矩阵的新型非线性最小二乘求解器。第三,解决许多大型正向问题的高成本是通过新的模型简化技术,特别是非常适合于所考虑的逆问题的结构减少。第四,通过Krylov子空间回收和参数化线性系统预条件子的有效重用,降低了计算简化模型和求解正问题的高成本。这里研究的逆问题涉及图像的恢复,描述了未知量的诊断兴趣(如电导率)是如何分布在整个给定的介质(如人体组织或土壤)。这些图像可以揭示异常的存在或不存在,例如人体组织中的肿瘤或土壤中的污染物羽流。在合理的时间内从噪声表面测量中计算提取高质量图像是一项非常困难的任务。随着技术的快速进步,可以进行更多的测量,计算瓶颈变得越来越严重,阻碍了医学和其他成像领域的创新。该项目旨在结合联合收割机在计算线性代数,系统理论和优化的不同领域的创新,创造显着改善的战略,图像提取。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric de Sturler其他文献

Eric de Sturler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric de Sturler', 18)}}的其他基金

Efficient Solver Algorithms for Graphical Processing Units
适用于图形处理单元的高效求解器算法
  • 批准号:
    2208470
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant
Early-Career and Student Support for the XX Householder Symposium
XX 户主研讨会的早期职业和学生支持
  • 批准号:
    1719217
  • 财政年份:
    2017
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
  • 批准号:
    1720305
  • 财政年份:
    2017
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    1025327
  • 财政年份:
    2010
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331583
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
EAGER GERMINATION Collaborative Research: Leveraging a Research Development Professional Network to Catalyze Statewide Innovative and Societally Relevant Research
渴望萌芽合作研究:利用研究开发专业网络促进全州创新和社会相关研究
  • 批准号:
    2409875
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331585
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: IUSE: EDU: Innovative and Inclusive Undergraduate XR Engineering Education to Cultivate Future Metaverse Workforce
合作研究:IUSE:EDU:创新和包容的本科 XR 工程教育,培养未来的元宇宙劳动力
  • 批准号:
    2315596
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331584
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: IUSE: EDU: Innovative and Inclusive Undergraduate XR Engineering Education to Cultivate Future Metaverse Workforce
合作研究:IUSE:EDU:创新和包容的本科 XR 工程教育,培养未来的元宇宙劳动力
  • 批准号:
    2315595
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331582
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331586
  • 财政年份:
    2023
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
EAGER GERMINATION Collaborative Research: Leveraging a Research Development Professional Network to Catalyze Statewide Innovative and Societally Relevant Research
渴望萌芽合作研究:利用研究开发专业网络促进全州创新和社会相关研究
  • 批准号:
    2203442
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Our Understanding of Supercells from Convection Initiation to Tornadogenesis via Innovative Observations, Simulations, and Analysis Techniques
合作研究:通过创新的观测、模拟和分析技术提高我们对超级单体从对流引发到龙卷风发生的理解
  • 批准号:
    2150792
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了