OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
基本信息
- 批准号:1720305
- 负责人:
- 金额:$ 14.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The desire to form an image of a region of space from externally collected data arises in applications ranging from detecting and characterizing cancers in the body, to quantifying the distribution of water, oil, or subsurface pollutants, and to the timely accurate identification of explosives in crowded venues. The physics associated with signal propagation and sensing in these problems creates substantial computational challenges for transforming raw data into useful information. The research team in this project aims to develop computational methods that greatly reduce the cost of real time imaging by providing improvements in statistical inverse theory, numerical inversion methods, simulation models, and hybrid imaging models. The main thrusts of the project will be tested on imaging applications in medical tomography, environmental remediation, and airport security imaging. The techniques form the basis for addressing analogous problems associated with inversion of optical signals across a wide range of spatial and temporal scales. As part of the project, a modular course will be developed to teach these new methods at the graduate level. The course materials will be made available over the internet.The large-scale imaging, or inverse, problems addressed by this collaborative team require the minimization of a parameter-dependent function that expresses the misfit of predicted measurements for a candidate image and actual measurement data. The potentially large number of parameters must be minimized over an ever-increasing huge number of measurements, while concurrently some unknown set of the data may be redundant. Detailed images, however, are not always needed for addressing relevant, practical questions and decision making. A combination of computational techniques will be developed to make large-scale parameter-dependent minimization computationally feasible. Furthermore, novel efficient approaches for inferring critical image features will be developed, obviating need for complete reconstruction of an image. The research builds on recent methods that exploit randomization to compute accurate estimates of solutions at greatly reduced computational cost, and on the efficient construction of smaller, approximate, reduced order numerical models that are accurate for relevant sets of parameters, and thus reduce the cost of full simulation of the sensing physics. Probabilistic approaches for inference of critical image features that guide image interpretation and decision making will be developed. The mathematics associated with this approach requires these methods to capitalize on other new tools also under development in this project.
从外部收集的数据形成空间区域的图像的期望出现在从检测和表征体内癌症到量化水、油或地下污染物的分布以及在拥挤场所中及时准确识别爆炸物的应用中。在这些问题中,与信号传播和传感相关的物理学为将原始数据转换为有用信息带来了巨大的计算挑战。该项目的研究小组旨在通过提供统计反演理论、数值反演方法、模拟模型和混合成像模型的改进,开发大大降低真实的时间成像成本的计算方法。 该项目的主要目标将在医疗断层扫描、环境修复和机场安全成像中的成像应用上进行测试。这些技术形成了解决与跨越宽范围的空间和时间尺度的光信号的反转相关联的类似问题的基础。作为该项目的一部分,将开发一个模块课程,在研究生一级教授这些新方法。课程材料将通过互联网提供。这个合作团队解决的大规模成像或逆问题需要最小化参数依赖函数,该函数表示候选图像和实际测量数据的预测测量的失配。潜在的大量参数必须在不断增加的大量测量中被最小化,而同时一些未知的数据集可能是冗余的。 然而,详细的图像并不总是需要解决相关的实际问题和决策。将开发一种计算技术的组合,使大规模的参数依赖的最小化计算可行。 此外,将开发用于推断关键图像特征的新的有效方法,从而避免对图像的完全重建的需要。该研究建立在最近的方法,利用随机化计算的解决方案的准确估计,大大降低了计算成本,并有效地构建更小的,近似的,降阶的数值模型,是准确的相关参数集,从而降低成本的传感物理的全面模拟。将开发用于推断指导图像解释和决策的关键图像特征的概率方法。与这种方法相关的数学要求这些方法利用本项目正在开发的其他新工具。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Projection Methods with Recycling for Inverse Problems
- DOI:10.1137/20m1349515
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Julianne Chung;E. D. Sturler;Jiahua Jiang
- 通讯作者:Julianne Chung;E. D. Sturler;Jiahua Jiang
Topology Optimization With Many Right-Hand Sides Using Mirror Descent Stochastic Approximation—Reduction From Many to a Single Sample
- DOI:10.1115/1.4045902
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:X. Zhang;E. D. Sturler;A. Shapiro
- 通讯作者:X. Zhang;E. D. Sturler;A. Shapiro
A survey of subspace recycling iterative methods
- DOI:10.1002/gamm.202000016
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Kirk M. Soodhalter;E. D. Sturler;M. Kilmer
- 通讯作者:Kirk M. Soodhalter;E. D. Sturler;M. Kilmer
Randomized approaches to accelerate MCMC algorithms for Bayesian inverse problems
加速贝叶斯逆问题 MCMC 算法的随机方法
- DOI:10.1016/j.jcp.2021.110391
- 发表时间:2021
- 期刊:
- 影响因子:4.1
- 作者:Saibaba, Arvind K.;Prasad, Pranjal;de Sturler, Eric;Miller, Eric;Kilmer, Misha E.
- 通讯作者:Kilmer, Misha E.
Preconditioning Parametrized Linear Systems
- DOI:10.1137/20m1331123
- 发表时间:2016-01
- 期刊:
- 影响因子:0
- 作者:Arielle K. Carr;E. D. Sturler;S. Gugercin
- 通讯作者:Arielle K. Carr;E. D. Sturler;S. Gugercin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric de Sturler其他文献
Eric de Sturler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric de Sturler', 18)}}的其他基金
Efficient Solver Algorithms for Graphical Processing Units
适用于图形处理单元的高效求解器算法
- 批准号:
2208470 - 财政年份:2022
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
Early-Career and Student Support for the XX Householder Symposium
XX 户主研讨会的早期职业和学生支持
- 批准号:
1719217 - 财政年份:2017
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Collaborative Research: Innovative Integrative Strategies for Nonlinear Parametric Inversion
合作研究:非线性参数反演的创新综合策略
- 批准号:
1217156 - 财政年份:2012
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
- 批准号:
1025327 - 财政年份:2010
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114312 - 财政年份:2021
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127331 - 财政年份:2021
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
- 批准号:
2114304 - 财政年份:2021
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
- 批准号:
1938702 - 财政年份:2019
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709601 - 财政年份:2017
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
- 批准号:
1710514 - 财政年份:2017
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
- 批准号:
1720291 - 财政年份:2017
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720116 - 财政年份:2017
- 资助金额:
$ 14.9万 - 项目类别:
Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709275 - 财政年份:2017
- 资助金额:
$ 14.9万 - 项目类别:
Standard Grant