AF: Small: Metric Geometry for Combinatorial Problems
AF:小:组合问题的度量几何
基本信息
- 批准号:1217256
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric spaces arise in computer science through a number of avenues. The most obvious of these occurs when the input data for a problem possesses an inherent metric structure, like the hop-distance between nodes in a network, or the similarity distance between pairs of genomic sequences. But there are other, more subtle examples, like the geometry of sparse vectors, which arises prominently in coding theory, signal recovery, and quantum information, or the effective resistance distance between nodes in an electrical network, which has proven to be a powerful algorithmic tool in attacking both algebraic and combinatorial problems.Perhaps most strikingly, in the setting of combinatorial optimization, high-dimensional geometry often presents itself in an unexpected and profound manner. A basic example is the use of convex optimization in the solution---exact or approximate---to a variety of combinatorial problems. In many cases, a problem with an a priori purely combinatorial structure is shown to involve rich geometric phenomenon. Furthermore, we now realize that often this structure is inherent and fundamental, in the sense that any solution to the problem must confront its geometric core.The PI will seek to understand these connections and develop new algorithmic techniques to exploit them. This work will employ techniques from high-dimensional geometry and probability, functional analysis, spectral geometry, and combinatorics to attack problems at the forefront of computer science. This includes addressing fundamental gaps in our understanding of theoretical issues, as well as developing solutions to practical problems that arise from the need to analyze and manipulate massive data sets. To achieve these goals, the investigator intends to address central, important open problems in the fields of approximation algorithms, high-dimensional information theory, and discrete asymptotic convex geometry.
几何空间在计算机科学中通过许多途径出现。当问题的输入数据具有固有的度量结构时,就会出现最明显的问题,比如网络中节点之间的跳距,或者基因组序列对之间的相似距离。但还有其他更微妙的例子,比如稀疏向量的几何,它在编码理论、信号恢复和量子信息中突出出现,或者电网络中节点之间的有效电阻距离,它已被证明是解决代数和组合问题的强大算法工具。也许最引人注目的是,在组合优化的设置中,高维几何常常以一种意想不到的和深刻的方式呈现出来。一个基本的例子是在各种组合问题的精确或近似解中使用凸优化。在许多情况下,具有先验纯组合结构的问题会涉及到丰富的几何现象。此外,我们现在认识到,这种结构往往是固有的和基本的,因为任何解决问题的办法都必须面对其几何核心。PI将寻求理解这些联系,并开发新的算法技术来利用它们。这项工作将采用高维几何和概率、功能分析、光谱几何和组合学等技术来解决计算机科学前沿的问题。这包括解决我们对理论问题的理解中的根本差距,以及为分析和操作大量数据集的需求所产生的实际问题制定解决方案。为了实现这些目标,研究者打算在近似算法、高维信息理论和离散渐近凸几何领域解决中心的、重要的开放问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Lee其他文献
Will China’s Rise Be Peaceful? A Social Psychological Perspective
中国的崛起会是和平的吗?
- DOI:
10.1080/14799855.2016.1140644 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
James Lee - 通讯作者:
James Lee
Triple-Combination Therapy with Olmesartan, Amlodipine, and Hydrochlorothiazide in Black and Non-Black Study Participants with Hypertension
奥美沙坦、氨氯地平和氢氯噻嗪对黑人和非黑人高血压研究参与者的三联疗法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3
- 作者:
S. Chrysant;T. Littlejohn;J. L. Izzo;D. Kereiakes;S. Oparil;M. Melino;James Lee;Victor Fernandez;R. Heyrman - 通讯作者:
R. Heyrman
SUN13837 in Treatment of Acute Spinal Cord Injury, the ASCENT-ASCI Study
SUN13837 治疗急性脊髓损伤,ASCENT-ASCI 研究
- DOI:
10.11648/j.cnn.20180201.11 - 发表时间:
2018 - 期刊:
- 影响因子:6
- 作者:
B. Levinson;James Lee;H. Chou;D. Maiman - 通讯作者:
D. Maiman
Shared Mental Models Among Clinical Competency Committees in the Context of Time-Variable-Competency-Based Advancement to Residency.
在基于时间变量的能力提升为住院医师的背景下,临床能力委员会之间的共享思维模型。
- DOI:
10.1097/acm.0000000000003638 - 发表时间:
2020 - 期刊:
- 影响因子:7.4
- 作者:
A. Schwartz;D. Balmer;Emily C Borman;Alan Chin;Duncan Henry;B. Herman;Patricia M Hobday;James Lee;Sara M. Multerer;Ross E. Myers;K. Ponitz;A. Rosenberg;J. Soep;Daniel C. West;R. Englander - 通讯作者:
R. Englander
Abuse potential of mirogabalin in recreational polydrug users
米洛巴林在娱乐性多种药物使用者中的滥用可能性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4.4
- 作者:
J. Mendell;N. Levy‐Cooperman;E. Sellers;B. Vince;D. Kelsh;James Lee;V. Warren;H. Zahir - 通讯作者:
H. Zahir
James Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Lee', 18)}}的其他基金
UKRI AHRC Impact Acceleration Account
UKRI AHRC 影响力加速账户
- 批准号:
AH/X003574/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Air quality benefits from multi-year changes in post-pandemic working and travel patterns
空气质量受益于大流行后工作和旅行模式的多年变化
- 批准号:
NE/W00481X/1 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Research Grant
AF: Small: Metric Information Theory, Online Learning, and Competitive Analysis
AF:小:度量信息论、在线学习和竞争分析
- 批准号:
2007079 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Atmospheric Composition and Radiative forcing effects_due to UN International Ship Emissions regulations
大气成分和辐射强迫效应_根据联合国国际船舶排放法规
- 批准号:
NE/S004564/1 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Research Grant
AF: Small: Entropy Maximization in Approximation, Learning, and Complexity
AF:小:近似、学习和复杂性中的熵最大化
- 批准号:
1616297 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Megacity Delhi atmospheric emission quantification, assessment and impacts (DelhiFlux)
德里特大城市大气排放量化、评估和影响 (DelhiFlux)
- 批准号:
NE/P01643X/1 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Sources and Emissions of Air Pollutants in Beijing
北京大气污染物来源及排放
- 批准号:
NE/N006917/1 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Research Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
- 批准号:
1407779 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
ClearfLo: Clean Air for London
ClearfLo:伦敦清洁空气
- 批准号:
NE/H003223/1 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Research Grant
AF: Small: Spectral analysis, spectral algorithms, and beyond
AF:小型:光谱分析、光谱算法等
- 批准号:
0915251 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




