AF: Small: Entropy Maximization in Approximation, Learning, and Complexity
AF:小:近似、学习和复杂性中的熵最大化
基本信息
- 批准号:1616297
- 负责人:
- 金额:$ 46.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Entropy plays a distinguished role in the world. The second law of thermodynamics tell us that, in closed systems, entropy always increases; it is maximized at thermodynamic equilibrium. Given a collection of data, the "principle of maximum entropy" asserts that, among all hypothetical probability distributions that agree with the data, the one of maximum entropy best represents the current state of knowledge.Moreover, if one considers a convex set of probability distributions, the problem of maximizing a strongly concave function (like the Shannon entropy) over this set is computationally tractable and has a unique optimal solution. This project is concerned with the structure and computational utility of entropy maximizers in algorithm design, machine learning, complexity theory, and related areas of discrete mathematics. In particular, the project will study the role of entropy maximization in encouraging simplicity in the optimum solution. This property stands to reason: The entropy maximizer should intuitively contain only the information implied by the constraints and nothing more.The scope of the project includes not only classical entropy functionals like the Shannon entropy and Kullback-Leibler divergence, but also the analogous notions for quantum states (von Neumann entropy). The study of quantum entropy maximizers has far-reaching applications in semi-definite programming and communication complexity. Moreover, much of the theory extends to other Bregman divergences, and this is particularly relevant for applications in online algorithms where certain smoothed entropy functionals become relevant. A portion of the project concerns entropy optimality on path spaces. This perspective provides a novel view of Markov processes on discrete and continuous spaces. The PI will employ this viewpoint to study rapid mixing of Markov chains, as well smoothing properties of the noise operator on the discrete hypercube (a topic with remarkable applications in complexity theory and hardness of approximation).Finally, it should be mentioned that iterative algorithms for finding entropy maximizers can be viewed in the framework of entropy-regularized gradient descent; such algorithms are fundamental in machine learning (boosting) and online convex optimization (multiplicative weights update). This provides a powerful connection to large bodies of work, and a substantial motivation for the project is to create a bridge of ideas and techniques between the two perspectives.Broader impact of the project includes training of the next generation of scientists, including at the undergraduate level. This project presents a number of opportunities for undergraduate researchers to contribute in a meaningful and substantial way, while at the same time receiving valuable mentoring and experience as developing scientists.
熵在世界上起着杰出的作用。 热力学的第二定律告诉我们,在封闭的系统中,熵总是增加。它在热力学平衡时最大化。 Given a collection of data, the "principle of maximum entropy" asserts that, among all hypothetical probability distributions that agree with the data, the one of maximum entropy best represents the current state of knowledge.Moreover, if one considers a convex set of probability distributions, the problem of maximizing a strongly concave function (like the Shannon entropy) over this set is computationally tractable and has a unique optimal solution. 该项目与算法设计,机器学习,复杂性理论以及离散数学相关领域中熵最大化器的结构和计算实用性有关。 特别是,该项目将研究熵最大化在鼓励最佳解决方案中的简单性中的作用。 该属性是理性的:熵最大化器应直观地包含约束所隐含的信息,而仅此而已。该项目的范围不仅包括Shannon Entrody和Kullback-Lebler Divergence等经典熵功能,还包括量子状态的类似概念(VonNeumann Entropy)。 量子熵最大化器的研究在半准编程和通信复杂性中具有深远的应用。 此外,许多理论都扩展到其他布雷格曼的分歧,这与某些平滑熵功能变得相关的在线算法中的应用尤其重要。 该项目的一部分涉及路径空间上的熵最优性。 这种观点为离散和连续空间的马尔可夫过程提供了一种新颖的看法。 PI将采用该观点来研究马尔可夫链的快速混合,以及噪声操作员在离散超立方体上的平滑特性(在复杂性理论中具有显着应用的主题和近似值的硬度)。在本质上,应提到,迭代算法可以在寻找入围性最大化的框架中查看框架的框架。这种算法在机器学习(增强)和在线凸优化(乘法权重更新)中至关重要。 这为大型工作机构提供了有力的联系,该项目的实质性动机是在两个观点之间建立思想和技术的桥梁。该项目的影响包括对下一代科学家的培训,包括在本科层面。 该项目为本科研究人员提供了许多以有意义和实质性的方式做出贡献的机会,同时也获得了作为发展科学家的宝贵指导和经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Lee其他文献
SUN13837 in Treatment of Acute Spinal Cord Injury, the ASCENT-ASCI Study
SUN13837 治疗急性脊髓损伤,ASCENT-ASCI 研究
- DOI:
10.11648/j.cnn.20180201.11 - 发表时间:
2018 - 期刊:
- 影响因子:6
- 作者:
B. Levinson;James Lee;H. Chou;D. Maiman - 通讯作者:
D. Maiman
Beyond disease susceptibility—Leveraging genome‐wide association studies for new insights into complex disease biology
超越疾病易感性——利用全基因组关联研究获得对复杂疾病生物学的新见解
- DOI:
10.1111/tan.13170 - 发表时间:
2017 - 期刊:
- 影响因子:8
- 作者:
James Lee - 通讯作者:
James Lee
Global Resource Manager for mobile satellite systems with ancillary terrestrial components
用于具有辅助地面组件的移动卫星系统的全球资源管理器
- DOI:
10.1109/sarnof.2010.5469754 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Erik Halvorson;Adam Eisenman;F. Edalat;J. Freedman;Arnold Berman;James Lee - 通讯作者:
James Lee
Racial and socioeconomic status differences in survival of colorectal cancer patients in hawaii
夏威夷结直肠癌患者生存率的种族和社会经济地位差异
- DOI:
10.1002/1097-0142(19820515)49:10<2208::aid-cncr2820491038>3.0.co;2-6 - 发表时间:
1982 - 期刊:
- 影响因子:6.2
- 作者:
E. Wegner;L. Kolonel;A. Nomura;James Lee - 通讯作者:
James Lee
Will China’s Rise Be Peaceful? A Social Psychological Perspective
中国的崛起会是和平的吗?
- DOI:
10.1080/14799855.2016.1140644 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
James Lee - 通讯作者:
James Lee
James Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Lee', 18)}}的其他基金
UKRI AHRC Impact Acceleration Account
UKRI AHRC 影响力加速账户
- 批准号:
AH/X003574/1 - 财政年份:2022
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
Air quality benefits from multi-year changes in post-pandemic working and travel patterns
空气质量受益于大流行后工作和旅行模式的多年变化
- 批准号:
NE/W00481X/1 - 财政年份:2021
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
AF: Small: Metric Information Theory, Online Learning, and Competitive Analysis
AF:小:度量信息论、在线学习和竞争分析
- 批准号:
2007079 - 财政年份:2020
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Atmospheric Composition and Radiative forcing effects_due to UN International Ship Emissions regulations
大气成分和辐射强迫效应_根据联合国国际船舶排放法规
- 批准号:
NE/S004564/1 - 财政年份:2019
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
Megacity Delhi atmospheric emission quantification, assessment and impacts (DelhiFlux)
德里特大城市大气排放量化、评估和影响 (DelhiFlux)
- 批准号:
NE/P01643X/1 - 财政年份:2016
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
Sources and Emissions of Air Pollutants in Beijing
北京大气污染物来源及排放
- 批准号:
NE/N006917/1 - 财政年份:2016
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
- 批准号:
1407779 - 财政年份:2014
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
AF: Small: Metric Geometry for Combinatorial Problems
AF:小:组合问题的度量几何
- 批准号:
1217256 - 财政年份:2012
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
ClearfLo: Clean Air for London
ClearfLo:伦敦清洁空气
- 批准号:
NE/H003223/1 - 财政年份:2010
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
AF: Small: Spectral analysis, spectral algorithms, and beyond
AF:小型:光谱分析、光谱算法等
- 批准号:
0915251 - 财政年份:2009
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
相似国自然基金
间充质干细胞膜修饰的高熵合金纳米酶用于非小细胞肺癌的化学动力学/免疫治疗协同抗肿瘤性能研究
- 批准号:52271247
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于流域地貌熵的黄土小流域地貌演化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于流域地貌熵的黄土小流域地貌演化机制研究
- 批准号:42271417
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
间充质干细胞膜修饰的高熵合金纳米酶用于非小细胞肺癌的化学动力学/免疫治疗协同抗肿瘤性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
多重分形符号相位转移熵理论及其在海面漂浮小目标检测中的应用
- 批准号:61901195
- 批准年份:2019
- 资助金额:23.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural understanding of 7SK-snRNP mediated transcriptional regulation
7SK-snRNP 介导的转录调控的结构理解
- 批准号:
10583647 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Genetic information flow in the Hallmarks of Aging: from system-level analytics to mechanistic interventions
衰老标志中的遗传信息流:从系统级分析到机械干预
- 批准号:
10721479 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
- 批准号:
10793779 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Developing unbiased AI/Deep learning pipelines to strengthen lung cancer health disparities research
开发公正的人工智能/深度学习管道以加强肺癌健康差异研究
- 批准号:
10841956 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
- 批准号:
10419416 - 财政年份:2022
- 资助金额:
$ 46.6万 - 项目类别: