CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
基本信息
- 批准号:1218331
- 负责人:
- 金额:$ 20.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning and inference in distributed settings is an important from both a scientific and engineering perspective. A typical instance of the problem is a network of individual sensors or agents attempting to infer a global distribution that governs their local observations. By passing messages the agents can individually make inference about a global phenomenon. This research investigates communication and networking paradigms that can enable a network of individual agents to collaboratively estimate distributions over high dimensional spaces, even when individual observations are severely limited in accuracy, space, or time. In particular, the investigators study how individual decision makers can integrate two kinds of information: local observations and messages from their neighbors in the network. Both observation and messaging can be thought of as sampling : individuals sample their own environment and sample the opinions of their neighbors. Central to the approach is that the agents generate simple messages at random from an internal estimate of the global distribution of interest. The first major goal of this project is to develop a mathematical framework and analysis techniques to understand if and when this limited form of learning and communication is sufficient for an individual to estimate and learn distributions and/or global parameters governing the observations of all nodes. The technical approach is a blend of analysis techniques ranging from stochastic approximation, randomized algorithms, and statistical physics. Applications for this work range from mathematical modeling of messages and opinion formation in social networks, communication protocols for distributed optimization, and estimation of parameters in data networks. The work will cover several related problems : estimating high-dimensional histograms of data held in the network, parametric estimation using a mix of Bayesian and non-Bayesian techniques, and estimation of more complex generative models. The final part of the work is to apply these methods to peer-peer networks and social network modeling. The broader impact of this work is to further develop the interdisciplinary field of network science, which impacts both quantitative social sciences and engineering. The PIs will develop educational materials and organize research activities to help bring together different research communities interested in networks and social learning.
从科学和工程的角度来看,分布式环境中的学习和推理都很重要。 该问题的一个典型实例是单个传感器或代理的网络试图推断管理其本地观测的全局分布。 通过传递消息,代理可以单独对全球现象进行推断。 本研究调查的通信和网络的范例,可以使网络的个人代理,以协同估计分布在高维空间,即使个人的意见是严重限制的准确性,空间或时间。特别是,研究人员研究了个体决策者如何整合两种信息:本地观察和来自网络中邻居的信息。 观察和信息传递都可以被认为是采样:个体对自己的环境进行采样,并对邻居的意见进行采样。 该方法的核心是,代理随机生成简单的消息,从内部估计的全球分布的兴趣。 该项目的第一个主要目标是开发一个数学框架和分析技术,以了解这种有限的学习和交流形式是否以及何时足以让个人估计和学习支配所有节点观测的分布和/或全局参数。 技术方法是一个混合的分析技术,从随机近似,随机算法和统计物理。 这项工作的应用范围从社交网络中的消息和意见形成的数学建模,分布式优化的通信协议,以及数据网络中的参数估计。 这项工作将涵盖几个相关的问题:估计网络中保存的数据的高维直方图,使用贝叶斯和非贝叶斯技术的混合进行参数估计,以及估计更复杂的生成模型。 最后将这些方法应用到对等网络和社会网络建模中。 这项工作的更广泛的影响是进一步发展网络科学的跨学科领域,这影响了定量社会科学和工程学。 PI将开发教育材料并组织研究活动,以帮助汇集对网络和社会学习感兴趣的不同研究社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anand Sarwate其他文献
Ieee Information Theory Society Newsletter President's Column from the Editor Ieee Information Theory Society Newsletter the Historian's Column
IEEE 信息论学会通讯 主席编辑专栏 IEEE 信息论学会通讯 历史学家专栏
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Meir Feder;Tracey Ho;Joerg Kliewer;Anand Sarwate;Andy Singer - 通讯作者:
Andy Singer
Ieee Information Theory Society Newsletter President's Column from the Editor It Society Member Honored Scholar One Website for Ieee Transactions on Information Theory Has Gone Live Throughput and Capacity Regions Coding for Noisy Networks
Ieee 信息论协会通讯 编辑主席专栏 It 协会会员 荣誉学者 IEEE 信息论交易网站已上线 吞吐量和容量 噪声网络区域编码
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Helmut Bölcskei;Giuseppe Caire;Meir Feder;Joerg Kliewer;Anand Sarwate;Andy Singer;Dave Forney;S. Shamai;Alexander Vardy;Sergio Verdú;F. Kschischang;Tracey Ho;Norman C Beaulieu;Icore Research Chair;Anthony Ephremides;A. E. Gamal - 通讯作者:
A. E. Gamal
Anand Sarwate的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anand Sarwate', 18)}}的其他基金
RINGS: REALTIME: Resilient Edge-cloud Autonomous Learning with Timely Inferences
RINGS:实时:具有及时推理能力的弹性边缘云自主学习
- 批准号:
2148104 - 财政年份:2022
- 资助金额:
$ 20.84万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Between Shannon and Hamming
CIF:小:香农和汉明之间的合作研究
- 批准号:
1909468 - 财政年份:2019
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
CIF: Small: ESTRELLA: Exploiting Structure in Tensors for Representation, Estimation, and Limits of Learning Algorithms
CIF:小:ESTRELLA:利用张量结构进行表示、估计和学习算法的限制
- 批准号:
1910110 - 财政年份:2019
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
TWC: Small: PERMIT: Privacy-Enabled Resource Management for IoT Networks
TWC:小型:PERMIT:物联网网络的启用隐私的资源管理
- 批准号:
1617849 - 财政年份:2016
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
CAREER: Privacy-preserving learning for distributed data
职业:分布式数据的隐私保护学习
- 批准号:
1453432 - 财政年份:2015
- 资助金额:
$ 20.84万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Inference by social sampling
CIF:小型:协作研究:社会抽样推断
- 批准号:
1440033 - 财政年份:2014
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
- 批准号:
2312753 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Maximizing Coding Gain in Coded Computing
协作研究:CIF:小型:最大化编码计算中的编码增益
- 批准号:
2327509 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
- 批准号:
2230161 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Standard Grant