Graphical Approaches to Modeling High-Dimensional Data
高维数据建模的图形方法
基本信息
- 批准号:1219234
- 负责人:
- 金额:$ 29.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research involves theoretical and applied research on learning and representation of high-dimensional data. The term high dimensionality refers to the property that the number of variablesor ?unknowns? is typically much larger than the number of observations available at hand. A keychallenge is being able to represent and learn such phenomena with sample and computationalrequirements scaling favorably in the number of dimensions. This project addresses these challengesthrough a graphical approach by exploiting the inherent graphical structure present in many largedata-sets.This research considers modeling high-dimensional data through probabilistic graphical models,also known as Markov random fields. An important research thrust of this proposal is to developnovel algorithms for learning and inference under the framework of graphical models. Anotherimportant thrust of this proposal is to develop efficient scalable models for representing high-dimensional data beyond the traditional framework of graphical models. This research establishesstrong theoretical guarantees for the developed methods, as well as applies them to real data invarious domains, including genetic and financial data, and data from large online social networkssuch as Facebook and Twitter.
本研究涉及高维数据学习与表示的理论与应用研究。术语“高维”指的是变量或未知数的数量。通常要比手头的观测数据大得多。一个关键的挑战是能够用样本和计算需求在维数上有利地缩放来表示和学习这些现象。该项目通过利用许多大型数据集中存在的固有图形结构,通过图形方法解决了这些挑战。本研究考虑通过概率图形模型(也称为马尔可夫随机场)对高维数据进行建模。本提案的一个重要研究重点是在图形模型框架下开发新的学习和推理算法。该建议的另一个重要推力是开发有效的可扩展模型,以超越传统的图形模型框架来表示高维数据。本研究为所开发的方法建立了强有力的理论保障,并将其应用于各个领域的真实数据,包括遗传和金融数据,以及来自Facebook和Twitter等大型在线社交网络的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Animashree Anandkumar其他文献
MIT Open Access Articles Scaling laws for learning high-dimensional Markov forest distributions
麻省理工学院开放获取文章学习高维马尔可夫森林分布的缩放定律
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Vincent Y. F. Tan;Animashree Anandkumar;A. Willsky - 通讯作者:
A. Willsky
Multi-modal molecule structure–text model for text-based retrieval and editing
用于基于文本的检索和编辑的多模态分子结构-文本模型
- DOI:
10.1038/s42256-023-00759-6 - 发表时间:
2023-12-18 - 期刊:
- 影响因子:23.900
- 作者:
Shengchao Liu;Weili Nie;Chengpeng Wang;Jiarui Lu;Zhuoran Qiao;Ling Liu;Jian Tang;Chaowei Xiao;Animashree Anandkumar - 通讯作者:
Animashree Anandkumar
Animashree Anandkumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Animashree Anandkumar', 18)}}的其他基金
BIGDATA: Small: DA: DCM: Measurement and Learning in Large-Scale Social Networks
BIGDATA:小型:DA:DCM:大规模社交网络中的测量和学习
- 批准号:
1251267 - 财政年份:2013
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
CAREER: Modeling Dependencies via Graphs: Scalable Inference Methods for Massive Datasets
职业:通过图建模依赖关系:海量数据集的可扩展推理方法
- 批准号:
1254106 - 财政年份:2013
- 资助金额:
$ 29.41万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
- 批准号:
10748709 - 财政年份:2023
- 资助金额:
$ 29.41万 - 项目类别:
CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery
职业:结合机器学习和基于物理的建模方法来加速科学发现
- 批准号:
2239175 - 财政年份:2023
- 资助金额:
$ 29.41万 - 项目类别:
Continuing Grant
Integration of experiments and biomolecular modeling through end-to-end differentiable approaches
通过端到端可微分方法整合实验和生物分子建模
- 批准号:
23H03412 - 财政年份:2023
- 资助金额:
$ 29.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Feasibility of predicting regional lung exposure from systemic pharmacokinetic data of generic OIDPs via population pharmacokinetic modeling and non-compartmental approaches
通过群体药代动力学模型和非房室方法根据仿制药 OIDP 的全身药代动力学数据预测局部肺暴露的可行性
- 批准号:
10797284 - 财政年份:2023
- 资助金额:
$ 29.41万 - 项目类别:
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:
10608446 - 财政年份:2023
- 资助金额:
$ 29.41万 - 项目类别:
Advancing the study of emotional development through novel modeling and coding approaches
通过新颖的建模和编码方法推进情感发展的研究
- 批准号:
RGPIN-2022-03517 - 财政年份:2022
- 资助金额:
$ 29.41万 - 项目类别:
Discovery Grants Program - Individual
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2022
- 资助金额:
$ 29.41万 - 项目类别:
Discovery Grants Program - Individual
Modeling and Therapeutic Approaches for Genetic Vasculopathies
遗传性血管病的建模和治疗方法
- 批准号:
10706537 - 财政年份:2022
- 资助金额:
$ 29.41万 - 项目类别:
MIM: Machine Learning, Systems Modeling, and Experimental Approaches to Understand the Universal Rules of Life of Microbiota Using Marine Time Series Data
MIM:利用海洋时间序列数据了解微生物群生命普遍规则的机器学习、系统建模和实验方法
- 批准号:
2125142 - 财政年份:2022
- 资助金额:
$ 29.41万 - 项目类别:
Standard Grant
Time-sensitive non-parametric Bayesian approaches for events modeling, recognition and prediction
用于事件建模、识别和预测的时间敏感非参数贝叶斯方法
- 批准号:
RGPIN-2017-06656 - 财政年份:2022
- 资助金额:
$ 29.41万 - 项目类别:
Discovery Grants Program - Individual