CAREER: Combining Machine Learning and Physics-based Modeling Approaches for Accelerating Scientific Discovery

职业:结合机器学习和基于物理的建模方法来加速科学发现

基本信息

  • 批准号:
    2239175
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Recent advances in machine learning make it possible to capture spatial and temporal dependencies from complex data, leading to tremendous success in several commercial applications where large-scale data are available. Given their success in commercial domains, machine-learning models are beginning to play an important role in advancing scientific discovery in diverse scientific domains, which are traditionally dominated by physics-based models. The use of machine-learning models is especially promising when relevant physical processes are not completely understood by our current body of knowledge due to the inherent complexity of the underlying phenomenon. However, the direct application of machine-learning models has met with limited success in real-world scientific applications, given that the data sets available for many scientific problems are far smaller than what is needed to effectively train advanced machine-learning models. Recently, there is a growing interest in combining machine learning and physical knowledge for studying scientific problems. Existing methods on this topic have shown promising results in isolated experiments, but they remain limited in real-world scientific applications with scarce training data, data variability, and incomplete or approximate physical information. The goal of this project is to systematically explore ways to combine machine-learning models and existing physics-based modeling approaches in a synergistic manner to model complex, non-stationary, and spatio-temporal processes for scientific problems. This project aims to explore a deep coupling of machine learning and physics-based models for modeling physical systems via four innovations. First, a new knowledge-guided machine-learning architecture will be built for capturing complex dynamics and interactions amongst physical variables, which helps improve the model prediction and generalizability. Second, new data-driven inverse models will be investigated for the discovery of physical parameters, which aids in improving the performance of physics-based models. Third, new model pre-training strategies will be developed to enable knowledge-guided machine-learning algorithms to work effectively even with a small number of observations. These pre-training strategies will leverage simulated data sets generated by physics-based models. New techniques will also be proposed to guide the configuration of physics-based models with the aim to create new simulated data sets for improving the pre-training effectiveness. Finally, new meta-learning approaches will be created for adapting the knowledge-guided machine-learning model over space and time. The proposed methods will leverage physical knowledge to estimate the similarity amongst different physical systems and facilitate model adaptation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习的最新进展使得从复杂数据中捕获空间和时间依赖性成为可能,从而在可获得大规模数据的几个商业应用中取得了巨大成功。鉴于机器学习模型在商业领域的成功,机器学习模型开始在推动不同科学领域的科学发现方面发挥重要作用,这些领域传统上由基于物理的模型主导。由于潜在现象的内在复杂性,当我们目前的知识体系还不能完全理解相关的物理过程时,机器学习模型的使用尤其有前途。然而,机器学习模型的直接应用在现实世界的科学应用中取得了有限的成功,因为许多科学问题的可用数据集远远小于有效训练高级机器学习模型所需的数据集。最近,人们对将机器学习和物理知识结合起来研究科学问题越来越感兴趣。关于该主题的现有方法在孤立的实验中显示出有希望的结果,但在现实世界的科学应用中,由于缺乏训练数据,数据变异性以及不完整或近似的物理信息,它们仍然受到限制。该项目的目标是系统地探索如何将机器学习模型和现有的基于物理的建模方法以协同的方式结合起来,为科学问题建立复杂、非平稳和时空过程的模型。该项目旨在通过四项创新探索机器学习和基于物理的模型的深度耦合,以建模物理系统。首先,将建立一个新的知识引导的机器学习架构,用于捕获物理变量之间的复杂动态和相互作用,这有助于提高模型的预测和泛化性。其次,将研究新的数据驱动逆模型,以发现物理参数,这有助于提高基于物理的模型的性能。第三,将开发新的模型预训练策略,使知识引导的机器学习算法即使在少量观察值下也能有效地工作。这些预训练策略将利用基于物理的模型生成的模拟数据集。还将提出新的技术来指导基于物理的模型的配置,目的是创建新的模拟数据集,以提高预训练的有效性。最后,将创建新的元学习方法,以便在空间和时间上适应知识引导的机器学习模型。所提出的方法将利用物理知识来估计不同物理系统之间的相似性,并促进模型适应。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaowei Jia其他文献

Enhanced photoexcited carrier separation in Ta3N5/SrTaO2N (1D/0D) heterojunctions for highly efficient visible light-driven hydrogen evolution
增强 Ta3N5/SrTaO2N (1D/0D) 异质结中的光激发载流子分离,实现高效可见光驱动的析氢
  • DOI:
    10.1016/j.apsusc.2020.145915
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Xiaowei Jia;Wenjing Chen;Yunfeng Li;Xuanbo Zhou;Xiaodan Yu;Yan Xing
  • 通讯作者:
    Yan Xing
Highly crystalline sulfur and oxygen co-doped g-C3N4 nanosheets as an advanced photocatalyst for efficient hydrogen generation
高结晶硫和氧共掺杂 g-C3N4 纳米片作为先进光催化剂用于高效制氢
  • DOI:
    10.1039/d2cy00824f
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xiaowei Jia;Yunfeng Li;Xianchun Liu;Xiaodan Yu;Cong Wang;Zhan Shi;Yan Xing
  • 通讯作者:
    Yan Xing
Fe-doped perovskite-like oxide KCuTa3O9 for photocatalytic hydrogen evolution under visible light irradiation
  • DOI:
    10.1016/j.jallcom.2023.170635
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Xiaowei Jia;Xianchun Liu;Ruyu Zhang;Anqi Xie;Yueran Li;Xiaodan Yu;Min Yu;Yunfeng Li;Zhan Shi;Yan Xing
  • 通讯作者:
    Yan Xing
Spatial-Logic-Aware Weakly Supervised Learning for Flood Mapping on Earth Imagery
地球图像洪水测绘的空间逻辑感知弱监督学习
  • DOI:
    10.1609/aaai.v38i20.30253
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zelin Xu;Tingsong Xiao;Wenchong He;Yu Wang;Zhe Jiang;Shigang Chen;Yiqun Xie;Xiaowei Jia;Da Yan;Yang Zhou
  • 通讯作者:
    Yang Zhou
Analysis of Energy Consumption Structure on CO2 Emission and Economic Sustainable Growth
能源消费结构对CO2排放与经济可持续增长的影响分析
  • DOI:
    10.1016/j.egyr.2022.02.296
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhiqiang Wang;Xiaowei Jia
  • 通讯作者:
    Xiaowei Jia

Xiaowei Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaowei Jia', 18)}}的其他基金

Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316305
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
FAI: Advancing Deep Learning Towards Spatial Fairness
FAI:推进深度学习迈向空间公平
  • 批准号:
    2147195
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CDS&E: Physics Guided Super-Resolution for Turbulent Transport
CDS
  • 批准号:
    2203581
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Research Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
  • 批准号:
    22KJ2450
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了