CAREER: Modeling Dependencies via Graphs: Scalable Inference Methods for Massive Datasets
职业:通过图建模依赖关系:海量数据集的可扩展推理方法
基本信息
- 批准号:1254106
- 负责人:
- 金额:$ 56.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research centers on theoretical and applied research on learning and representation of high-dimensional data. The term high dimensionality refers to the property that the number of variables or unknowns is typically much larger than the number of observations available at hand. A key challenge is being able to represent and learn such phenomena with sample and computational requirements scaling favorably in the number of dimensions. This project addresses these challenges through a graphical approach by exploiting the inherent graphical structure present in many large data-sets.This research considers modeling high-dimensional data through probabilistic graphical models, also known as Markov random fields. An important research thrust of this proposal is to develop novel algorithms for learning and inference under the framework of graphical models. Another important thrust of this proposal is to develop efficient scalable models for representing high-dimensional data beyond the traditional framework of graphical models. This research establishes strong theoretical guarantees for the developed methods, as well as applies them to real data in various domains, including genetic and financial data, and data from large online social networks such as Facebook and Twitter.
本研究主要针对高维数据的学习和表示进行理论和应用研究。术语高维是指变量或未知数的数量通常比手头可用观测的数量多得多的特性。一个关键的挑战是能够用样本和计算要求在维度数量上有利地缩放来表示和学习这种现象。该项目通过利用许多大型数据集中固有的图形结构来解决这些挑战。本研究考虑通过概率图形模型来建模高维数据,也称为马尔可夫随机场。该方案的一个重要研究方向是在图形模型的框架下开发新的学习和推理算法。这一建议的另一个重要主题是开发高效的可伸缩模型,用于表示传统的图形模型框架之外的高维数据。这项研究为所开发的方法建立了强有力的理论保障,并将其应用于各个领域的真实数据,包括遗传和金融数据,以及来自Facebook和Twitter等大型在线社交网络的数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Animashree Anandkumar其他文献
MIT Open Access Articles Scaling laws for learning high-dimensional Markov forest distributions
麻省理工学院开放获取文章学习高维马尔可夫森林分布的缩放定律
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Vincent Y. F. Tan;Animashree Anandkumar;A. Willsky - 通讯作者:
A. Willsky
Multi-modal molecule structure–text model for text-based retrieval and editing
用于基于文本的检索和编辑的多模态分子结构-文本模型
- DOI:
10.1038/s42256-023-00759-6 - 发表时间:
2023-12-18 - 期刊:
- 影响因子:23.900
- 作者:
Shengchao Liu;Weili Nie;Chengpeng Wang;Jiarui Lu;Zhuoran Qiao;Ling Liu;Jian Tang;Chaowei Xiao;Animashree Anandkumar - 通讯作者:
Animashree Anandkumar
Animashree Anandkumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Animashree Anandkumar', 18)}}的其他基金
BIGDATA: Small: DA: DCM: Measurement and Learning in Large-Scale Social Networks
BIGDATA:小型:DA:DCM:大规模社交网络中的测量和学习
- 批准号:
1251267 - 财政年份:2013
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Graphical Approaches to Modeling High-Dimensional Data
高维数据建模的图形方法
- 批准号:
1219234 - 财政年份:2012
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Continuing Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 56.06万 - 项目类别:
Standard Grant














{{item.name}}会员




