Collaborative Research: Spatial Spread of Stage-Structured Populations

合作研究:阶段结构种群的空间扩散

基本信息

项目摘要

Two significant challenges in ecology are to understand and accurately describe the spatial spread of species. Such spatial spread is important in a variety of ecological contexts, such as when non-native species invade new habitat and when species shift their spatial distributions in response to global change processes. Meeting these challenges requires population models that capture essential aspects of the dynamics of spatially spreading species, including demography and dispersal. Integro-difference equations will be used to describe the spread of populations with separate growth and dispersal stages wherein vital rates and dispersal abilities are determined by age, size, or developmental stage. Semi-discrete models (hybrid dynamical systems) involving reaction-diffusion equations and integro-differential equations will be employed to study the spread of populations in which different processes or different rates occur inside versus outside a species' reproductive period. Models with Allee effects will be developed for plant populations with pollination limitation, and for two-sex populations with reproductive asynchrony and imperfect mate-finding. Data from two well-studied field systems matching the structure of specific models will be used to parametrize key model components. The investigators will examine the existence of spreading speeds and traveling waves for the models, provide formulas for spreading speeds and traveling wave speeds, and calculate the sensitivity and elasticity of the speeds to changes in demographic and dispersal parameters. Methods from differential equations, integral equations, and dynamical systems will be used to investigate the spatial dynamics for the models. The outcomes of this research will also have broader impacts in other scientific disciplines where wave propagation is addressed. New rigorous mathematics will be integrated with extensive field and laboratory data to bridge the gulf between abstract mathematical results and ecological observations. To further broaden the impacts of this research, the investigators will also develop a MathBench module (.umd.edu) relating to ecological invasion dynamics. This module will feed into the larger, NSF-funded MathBench Initiative, which is designed to improve the quantitative literacy of undergraduate biology students and give them a deeper appreciation of the role of mathematics in understanding biological problems. Through new research at the interface of mathematics and biology, this project will contribute to the growing body of information on the spatial spread of species. Research on the dynamics of species spatial spread is essential to understanding when and where resource managers can act to limit the spread and impacts of non-native, invasive species. Likewise, better understanding of the dynamics of spatial spread is essential for forecasting species responses to global change processes. In this project the investigators will develop and analyze mathematical models incorporating species birth, growth, death, and movement to identify points in species? life-cycles that are critical to the rates of population spatial spread. Models for plant species limited by pollen supply and for populations featuring imperfect mate finding will be explored, with a focus on understanding the effects that particular population processes have on the rate and nature of species spatial spread. By focusing on two ecological case-studies in addition to novel mathematics, this project will help to point out specific targets and opportunities for natural resources management.
生态学中的两个重大挑战是理解和准确描述物种的空间分布。这种空间扩散在各种生态环境中都很重要,例如当非本地物种入侵新的栖息地时,以及当物种因全球变化过程而改变其空间分布时。应对这些挑战需要种群模型来捕捉空间传播物种动态的基本方面,包括人口统计学和扩散。积分-差分方程组将被用来描述具有不同生长和扩散阶段的种群的扩散,其中生命率和扩散能力由年龄、大小或发育阶段决定。半离散模型(混合动力系统),包括反应扩散方程和积分-微分方程,将被用来研究种群的扩散,其中不同的过程或不同的速率发生在一个物种的繁殖期内和之外。对于有传粉限制的植物种群,以及具有生殖异步性和不完全交配的两性种群,将建立具有Allee效应的模型。来自两个经过充分研究并与特定模型结构相匹配的实地系统的数据将被用来对关键模型组件进行参数化。研究人员将为模型检查传播速度和行波的存在,提供传播速度和行波速度的公式,并计算速度对人口统计和扩散参数变化的敏感度和弹性。从微分方程组、积分方程组和动力系统的方法将被用来研究模型的空间动力学。这项研究的结果也将对研究波传播的其他科学学科产生更广泛的影响。新的严格数学将与广泛的野外和实验室数据相结合,以弥合抽象数学结果和生态观测之间的鸿沟。为了进一步扩大这项研究的影响,研究人员还将开发一个与生态入侵动力学有关的MathBitch模块(.umd.edu)。这一模块将纳入由美国国家科学基金会资助的更大的MathBtch倡议,该倡议旨在提高本科生生物学学生的量化素养,并让他们更深入地了解数学在理解生物问题中的作用。通过在数学和生物学的界面上进行新的研究,该项目将有助于增加有关物种空间传播的信息量。对物种空间传播动态的研究对于理解资源管理者何时何地可以采取行动限制非本地入侵物种的传播和影响至关重要。同样,更好地了解空间扩散的动态对于预测物种对全球变化过程的反应也是至关重要的。在这个项目中,研究人员将开发和分析包含物种出生、生长、死亡和运动的数学模型,以确定物种中的点?对种群空间扩散速度至关重要的生命周期。将探索受花粉供应限制的植物物种和具有不完美交配发现的种群的模型,重点是了解特定种群过程对物种空间传播的速度和性质的影响。除了新的数学外,该项目还侧重于两个生态案例研究,将有助于指出自然资源管理的具体目标和机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bingtuan Li其他文献

Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates
  • DOI:
    10.1137/s003613999631100x
  • 发表时间:
    1998-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bingtuan Li
  • 通讯作者:
    Bingtuan Li
Oscillations of Delay Differential Equations with Variable Coefficients
Competition in a turbidostat for an inhibitory nutrient
  • DOI:
    10.1080/17513750802018345
  • 发表时间:
    2008-04
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Bingtuan Li
  • 通讯作者:
    Bingtuan Li
Invasion dynamics of competing species with stage-structure.
具有阶段结构的竞争物种的入侵动态。
  • DOI:
    10.1016/j.jtbi.2017.08.002
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2
  • 作者:
    S. Bewick;Guoqing Wang;H. Younes;Bingtuan Li;W. Fagan
  • 通讯作者:
    W. Fagan
Traveling wave solutions in a plant population model with a seed bank
具有种子库的植物种群模型中的行波解决方案

Bingtuan Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bingtuan Li', 18)}}的其他基金

Spreading Speeds and Non-Spreading Solutions for Spatial Population Models with Allee Effects
具有 Allee 效应的空间种群模型的传播速度和非传播解
  • 批准号:
    1951482
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Persistence and Spreading Speeds in Multi-Species Models with A Shifting Habitat Edge
栖息地边缘变化的多物种模型中的持久性和传播速度
  • 批准号:
    1515875
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis of Spreading Speeds and Traveling Waves in Multi-species Models of Biological Invasions
生物入侵多物种模型中的传播速度和行波分析
  • 批准号:
    0616445
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Analysis of Resource Competition Models
资源竞争模型分析
  • 批准号:
    0211614
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SPARC: Conducting Collaborative Research and Leveraging Resources to Advance Spatial Archaeometry
协作研究:SPARC:开展协作研究并利用资源推进空间考古学
  • 批准号:
    2309809
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225096
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225098
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
  • 批准号:
    2332010
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Experiments and Modeling for Spatial, Finite, and Fast Rheometry of Graded Hydrogels using Inertial Cavitation
合作研究:利用惯性空化对梯度水凝胶进行空间、有限和快速流变测量的综合实验和建模
  • 批准号:
    2232426
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了