Spreading Speeds and Non-Spreading Solutions for Spatial Population Models with Allee Effects
具有 Allee 效应的空间种群模型的传播速度和非传播解
基本信息
- 批准号:1951482
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spatial dynamics of populations remain poorly understood when compared to what is known about fluctuations in population size. For example, we have very limited understanding of how variability is maintained when populations spread across landscapes, why populations are often patchily distributed in space, and how phenology (the timing of biological events) influences these processes and patterns. The Allee threshold or critical size for population growth plays a particular role in spread of many populations. This project develops and analyzes mathematical models to investigate how a combination of an Allee effect and over-compensatory growth can produce oscillations in spreading speeds and robust non-spreading solutions across regions of parameter space, and to determine biologically when these outcomes should be expected. The project aims to extend these results to address important questions such as how "invasion models" can yield growth and persistence of a species in multiple, spatially separated patches within an unbounded habitat, and how phenology, stage-structure, and barrier zones affect spatially spreading systems. The findings of this research are expected to have direct, critical implications for controlling the spread of invasive species or promoting the reintroduction of native species into areas of extirpation. Graduate students will be trained through involvement in research at the interface of mathematics and biology. This project will advance our understanding of spatial population dynamics through rigorous efforts in four mathematical areas. These are: (i) analysis of integro-difference equations to characterize oscillations in spreading speeds and existence of non-spreading solutions; (ii) development and analysis of spatial models where Allee effects and over-compensation are generated by phenology and where dispersal is critical to population persistence; (iii) construction and examination of stage-structured models with an Allee effect; and (iv) creation and exploration of spatial models with an Allee effect and a stationary or moving barrier zone. For the models, the existence and stability of traveling wave solutions with constant and oscillating speeds will be established, and the links between the Allee effect and population dispersal will be explored. The minimal width of a barrier zone needed to stop, slow, or reverse a population invasion will be determined. Methods from differential equations, integral equations, and dynamical systems will be employed to identify conditions under which solutions spread into open space or stop invading. Applications of the models to biology will be addressed through studies of spread of species such as the gypsy moth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与对人口规模波动的了解相比,人们对人口的空间动态仍然知之甚少。例如,我们对当种群分布在不同景观中时如何保持变异性、为什么种群在空间中分布经常不均匀,以及物候(生物事件发生的时间)如何影响这些过程和模式等方面的了解非常有限。 Allee 阈值或人口增长的临界规模在许多人口的扩散中发挥着特殊作用。该项目开发并分析数学模型,以研究 Allee 效应和过度补偿性增长的组合如何在参数空间区域中产生传播速度振荡和稳健的非传播解决方案,并从生物学上确定何时应该预期这些结果。该项目旨在扩展这些结果以解决重要问题,例如“入侵模型”如何在无界栖息地内的多个空间分离斑块中产生物种的生长和持久性,以及物候、阶段结构和屏障区如何影响空间扩散系统。这项研究的结果预计将对控制入侵物种的传播或促进本土物种重新引入灭绝地区产生直接、关键的影响。研究生将通过参与数学和生物学交叉领域的研究来接受培训。该项目将通过四个数学领域的严格努力,增进我们对空间人口动态的理解。这些是: (i) 积分差分方程分析,以表征扩展速度的振荡和非扩展解的存在; (ii) 空间模型的开发和分析,其中 Allee 效应和过度补偿是由物候学产生的,并且扩散对于种群持续存在至关重要; (iii) 具有 Allee 效应的阶段结构模型的构建和检验; (iv) 创建和探索具有 Allee 效应和静止或移动障碍区的空间模型。对于模型,将建立具有恒定速度和振荡速度的行波解的存在性和稳定性,并探索阿利效应和种群扩散之间的联系。将确定阻止、减缓或扭转人口入侵所需的屏障区的最小宽度。将采用微分方程、积分方程和动力系统的方法来确定解扩散到开放空间或停止入侵的条件。这些模型在生物学中的应用将通过对吉普赛蛾等物种传播的研究来解决。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonspreading solutions and patch formation in an integro-difference model with a strong Allee effect and overcompensation
- DOI:10.1007/s12080-022-00544-y
- 发表时间:2021-10
- 期刊:
- 影响因子:1.6
- 作者:Garrett Otto;W. Fagan;Bingtuan Li
- 通讯作者:Garrett Otto;W. Fagan;Bingtuan Li
Wave speed and critical patch size for integro-difference equations with a strong Allee effect
- DOI:10.1007/s00285-022-01814-3
- 发表时间:2022-11-01
- 期刊:
- 影响因子:1.9
- 作者:Li, Bingtuan;Otto, Garrett
- 通讯作者:Otto, Garrett
Persistence and Spread of Solutions in a Two-Species Lotka-Volterra Competition-Diffusion Model with a Shifting Habitat
栖息地变化的两种 Lotka-Volterra 竞争扩散模型中解的持久性和传播
- DOI:10.1137/20m1341064
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fang-Di Dong;Jin Shang;William F. Fagan;Bingtuan Li
- 通讯作者:Bingtuan Li
Can a barrier zone stop invasion of a population?
屏障区可以阻止人口的入侵吗?
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Li, Bingtuan;Zhang, Minghua;Coffman, Bradley
- 通讯作者:Coffman, Bradley
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingtuan Li其他文献
Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates
- DOI:
10.1137/s003613999631100x - 发表时间:
1998-11 - 期刊:
- 影响因子:0
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Oscillations of Delay Differential Equations with Variable Coefficients
- DOI:
10.1006/jmaa.1995.1173 - 发表时间:
1995-05 - 期刊:
- 影响因子:1.3
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Competition in a turbidostat for an inhibitory nutrient
- DOI:
10.1080/17513750802018345 - 发表时间:
2008-04 - 期刊:
- 影响因子:2.8
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Invasion dynamics of competing species with stage-structure.
具有阶段结构的竞争物种的入侵动态。
- DOI:
10.1016/j.jtbi.2017.08.002 - 发表时间:
2017 - 期刊:
- 影响因子:2
- 作者:
S. Bewick;Guoqing Wang;H. Younes;Bingtuan Li;W. Fagan - 通讯作者:
W. Fagan
Traveling wave solutions in a plant population model with a seed bank
具有种子库的植物种群模型中的行波解决方案
- DOI:
10.1007/s00285-011-0481-x - 发表时间:
2011 - 期刊:
- 影响因子:1.9
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Bingtuan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingtuan Li', 18)}}的其他基金
Persistence and Spreading Speeds in Multi-Species Models with A Shifting Habitat Edge
栖息地边缘变化的多物种模型中的持久性和传播速度
- 批准号:
1515875 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Spatial Spread of Stage-Structured Populations
合作研究:阶段结构种群的空间扩散
- 批准号:
1225693 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Analysis of Spreading Speeds and Traveling Waves in Multi-species Models of Biological Invasions
生物入侵多物种模型中的传播速度和行波分析
- 批准号:
0616445 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
GOALI: SemiSynBio-III: Moving Millions of Droplets at Megahertz Speeds: DNA Computing, DNA Storage, and Synthetic Biology on an Industrial Platform for Digital Microfluidics
目标:SemiSynBio-III:以兆赫兹速度移动数百万个液滴:数字微流体工业平台上的 DNA 计算、DNA 存储和合成生物学
- 批准号:
2227578 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
MCA: Friction of Nanocrystals at Technologically Relevant Speeds: Filling the Gap of Knowledge in Nanotribology
MCA:纳米晶体在技术相关速度下的摩擦:填补纳米摩擦学知识空白
- 批准号:
2120214 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Modelling brittle fracture and finite sound speeds in amorphous solids
模拟非晶固体中的脆性断裂和有限声速
- 批准号:
577701-2022 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Design wind speeds near the ground for reasonable wind-resistant design
设计近地面风速,进行合理的抗风设计
- 批准号:
21K14237 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Computational Modeling of Larval Zebrafish Swimming Speeds
斑马鱼幼虫游泳速度的计算模型
- 批准号:
566014-2021 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Theoretical development for queueing models with variable processing speeds and its application to large-scale energy-saving data centers
变速排队模型理论发展及其在大型节能数据中心的应用
- 批准号:
21K11765 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanical and neural control determinants of maximum sprint speeds in humans
人类最大冲刺速度的机械和神经控制决定因素
- 批准号:
518447-2018 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Postgraduate Scholarships - Doctoral
Large Scale Computational Imaging at High Speeds
高速大规模计算成像
- 批准号:
518699-2018 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Postgraduate Scholarships - Doctoral
Performance Improvement and Formulation of Drag-typed Vertical Axis Wind Turbine with Sailcloth Blades at Low Wind Speeds by Controlling Blade Shape
通过控制叶片形状改进帆布叶片拖动式垂直轴风力机低风速性能改进及配方
- 批准号:
20K12270 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-performance risk analytics system capable of operating at one thousand times current speeds with huge savings in resource utilisation.
高性能风险分析系统能够以当前速度一千倍的速度运行,并大大节省资源利用率。
- 批准号:
81978 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Collaborative R&D














{{item.name}}会员




