Analysis of Spreading Speeds and Traveling Waves in Multi-species Models of Biological Invasions
生物入侵多物种模型中的传播速度和行波分析
基本信息
- 批准号:0616445
- 负责人:
- 金额:$ 9.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is dedicated to the development of mathematical theory regarding important aspects of biological invasions. The investigator will develop and analyze mathematical models that describe the growth, interactions, and migrations of multiple species. The models will incorporate competition and predator-prey interactions between species, and will be formulated in the form of reaction-diffusion equations or integro-difference equations with dispersal kernels. The models will represent the central aspects of spread of species in terms of a few measurable and biologically meaningful parameters, and will pose challenging problems in areas of qualitative studies of nonlinear integral equations, nonlinear differential equations, and population modeling. The investigator will use methods from ordinary and partial differential equations, difference equations, integral equations and dynamical systems to analyze the models and investigate at what speeds and in what forms species expand their ranges or retreat from the areas they previously occupied while interacting with other species locally. The investigator will in particular examine the spreading speed of a species that invades locally an area where a resident species has established itself in the form of an equilibrium distribution or a traveling wave distribution. The investigator will also study the existence of traveling waves in the models with an emphasis on relating traveling wave speeds to spreading speeds. Virtually every ecosystem has been invaded by foreign species with often drastic consequences for the native fauna or flora. The problem of biological invasions has been the focus of intensive management and research activities. This research will offer explanations of biological invasions in broad terms, and will provide a basis for prediction. The knowledge gained from the novel analytical techniques developed in this project will lead to the ability to develop mechanisms to handle problems such as natural resource management, and pest and disease control. This work will have applications outside of biology in areas of studies of wave propagation phenomena in chemistry and physics. In addition, this work will have educational benefits for students through direct involvement in the research and through research-based educational materials developed in the study of biological invasions.
这项研究致力于发展有关生物入侵的重要方面的数学理论。研究人员将开发和分析描述多个物种的生长、相互作用和迁移的数学模型。该模型将包括物种之间的竞争和捕食者-猎物之间的相互作用,并将以反应扩散方程或带有扩散核的积分-差分方程的形式来表示。这些模型将用一些可测量的和具有生物学意义的参数来表示物种传播的中心方面,并将在非线性积分方程组、非线性微分方程组和种群建模的定性研究领域提出具有挑战性的问题。研究人员将使用常微分方程式、差分方程式、积分方程式和动力系统的方法来分析模型,并调查物种在与当地其他物种相互作用时,以什么速度和形式扩大自己的活动范围或从以前占据的区域撤退。调查者将特别研究入侵当地的物种以平衡分布或行波分布的形式入侵该区域的物种的传播速度。研究人员还将研究模型中行波的存在,重点是将行波速度与传播速度联系起来。几乎每个生态系统都受到外来物种的入侵,对本土动植物造成了严重的后果。生物入侵问题一直是集约化管理和研究活动的焦点。这项研究将从广义上解释生物入侵,并为预测提供基础。从该项目开发的新分析技术中获得的知识将导致开发处理自然资源管理以及病虫害控制等问题的机制的能力。这项工作将在生物学之外的化学和物理领域研究波传播现象中得到应用。此外,这项工作将通过直接参与研究和通过在生物入侵研究中开发的基于研究的教育材料对学生产生教育效益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingtuan Li其他文献
Global Asymptotic Behavior of the Chemostat: General Response Functions and Different Removal Rates
- DOI:
10.1137/s003613999631100x - 发表时间:
1998-11 - 期刊:
- 影响因子:0
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Oscillations of Delay Differential Equations with Variable Coefficients
- DOI:
10.1006/jmaa.1995.1173 - 发表时间:
1995-05 - 期刊:
- 影响因子:1.3
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Competition in a turbidostat for an inhibitory nutrient
- DOI:
10.1080/17513750802018345 - 发表时间:
2008-04 - 期刊:
- 影响因子:2.8
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Invasion dynamics of competing species with stage-structure.
具有阶段结构的竞争物种的入侵动态。
- DOI:
10.1016/j.jtbi.2017.08.002 - 发表时间:
2017 - 期刊:
- 影响因子:2
- 作者:
S. Bewick;Guoqing Wang;H. Younes;Bingtuan Li;W. Fagan - 通讯作者:
W. Fagan
Traveling wave solutions in a plant population model with a seed bank
具有种子库的植物种群模型中的行波解决方案
- DOI:
10.1007/s00285-011-0481-x - 发表时间:
2011 - 期刊:
- 影响因子:1.9
- 作者:
Bingtuan Li - 通讯作者:
Bingtuan Li
Bingtuan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingtuan Li', 18)}}的其他基金
Spreading Speeds and Non-Spreading Solutions for Spatial Population Models with Allee Effects
具有 Allee 效应的空间种群模型的传播速度和非传播解
- 批准号:
1951482 - 财政年份:2020
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Persistence and Spreading Speeds in Multi-Species Models with A Shifting Habitat Edge
栖息地边缘变化的多物种模型中的持久性和传播速度
- 批准号:
1515875 - 财政年份:2015
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Collaborative Research: Spatial Spread of Stage-Structured Populations
合作研究:阶段结构种群的空间扩散
- 批准号:
1225693 - 财政年份:2012
- 资助金额:
$ 9.35万 - 项目类别:
Continuing Grant
Analysis of Resource Competition Models
资源竞争模型分析
- 批准号:
0211614 - 财政年份:2002
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
相似国自然基金
RNAi传播(RNAi spreading)体外模型的建立及FLJ21074功能的研究
- 批准号:30300067
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Roles of emerging pollutants in spreading antimicrobial resistance
新出现的污染物在传播抗菌素耐药性方面的作用
- 批准号:
DE240100842 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Discovery Early Career Researcher Award
ERI: Study of Powder Spreading Behavior for Additive Manufacturing Applications in a Novel Test Bed Environment
ERI:新型试验台环境中增材制造应用的粉末铺展行为研究
- 批准号:
2347633 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Evaluating the impact of spreading depolarisations, post stroke, in the awake brain using graphene-enabled nanotechnology.
使用石墨烯纳米技术评估中风后清醒大脑中扩散去极化的影响。
- 批准号:
MR/Y014545/1 - 财政年份:2024
- 资助金额:
$ 9.35万 - 项目类别:
Research Grant
Genetic diversity of antimicrobial-resistant bacteria spreading in rural areas of Vietnam
越南农村地区传播的耐药细菌的遗传多样性
- 批准号:
23K09672 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSFGEO-NERC: Quantifying evolution of magmatism and serpentinisation during the onset of seafloor spreading
NSFGEO-NERC:量化海底扩张开始期间岩浆作用和蛇纹石化的演化
- 批准号:
NE/T007419/1 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Research Grant
How Serine-129 Phosphorylation Status Affects the Spreading of α-Synuclein Pathology in Vivo: a Study in Knock-in Animals
Serine-129 磷酸化状态如何影响体内 α-突触核蛋白病理学的传播:敲入动物研究
- 批准号:
10736995 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Do seamounts on fossil oceanic spreading centers record triple-junction migration or mantle-plume activity? Guadalupe Island, Mexico as an archetype
化石海洋扩张中心的海山是否记录了三交点迁移或地幔柱活动?
- 批准号:
2236476 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Standard Grant
Unconventional Excitations and Information Spreading in Frustrated Quantum Magnets
受挫量子磁体中的非常规激发和信息传播
- 批准号:
23KJ2136 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive Study on Large-scale Fire Spreading Behavior using Turbulent Wind Tunnel
利用湍流风洞综合研究大面积火灾蔓延行为
- 批准号:
23KF0040 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular genetic verification of the local growing spreading and the horticultural application of Nawasiro-ichigo(Rubus parvifolius L.)
绳西路一号(Rubus parvifolius L.)当地生长蔓延及园艺应用的分子遗传学验证
- 批准号:
23K05210 - 财政年份:2023
- 资助金额:
$ 9.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)