BRIGE: Electrolysis of water using the chemical energy of biofuels: A combined experimental/theoretical approach
BRIGE:利用生物燃料的化学能电解水:实验/理论相结合的方法
基本信息
- 批准号:1226569
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Nikolla, ErandaProposal Number: 1226569Intellectual Merit: Electrolysis of water is an electrochemical process that generates hydrogen from water. Hydrogen is a key energy source and chemical, widely used in a number of important industrial processes. One of the drawbacks with this process is that it is energy intensive. In this proposal, we describe an approach that uses the chemical energy of a biofuel, a renewable source of energy - its processing leads to no net CO2 emissions - to run water electrolysis using solid oxide electrolyzers (SOEs). Biofuel-assisted SOEs are solid-state electrolyzers that, in principle, can electro-oxidize any oxygenated hydrocarbon (i.e. a biofuel) at the anode, and utilize its chemical energy internally to drive the electrochemical water splitting at the cathode. Our preliminary results show that the main challenges with SOEs operating with biofuels such as ethanol are: (i) the high overpotential losses at the cathode induced by the high activation energy barrier required to split water on the conventional cathode materials and (ii) the poor stability of the conventional anode materials due to carbon poisoning. The PI's long-term research goal is to develop robust SOE electrode (anode and cathode) materials that can efficiently generate pure H2 from water using the chemical energy of any biofuel source. In this two year BRIGE proposal, the overall objective is to identify robust SOE anode and cathode materials for ethanol-assisted SOEs. We will initially focus on ethanol, since it represents a reasonable model biofuel, containing both C-O and C-C bonds, characteristic of any biofuel molecule. It is our central hypothesis that modifying conventional monometallic SOE electrode materials (such as Ni, Co at the cathode and Ni at the anode) via alloying with another element (such as Ru, Rh at the cathode and Sn, Au, Ag at the anode) will induce geometric and electronic changes to the parent metal surface that will impact the chemistry on these surfaces and lead to improved performance. We propose to employ a combined experimental/theoretical approach to unearth the surface chemistry that governs (i) the process of electrochemical water splitting on cathode materials (such as Ni, Co, Ni/Ru, Ni/Rh, Co/Ru and Co/Rh alloy) and (ii) the stability of the anode materials (such as Ni and Ni/Sn, Ni/Ag and Ni/Au alloy). This information will allow us to identify the electrode materials with the outmost activity and stability. We expect that this work will lead to the development of robust SOEs systems that use the chemical energy of ethanol to drive the production of clean H2 from water. In addition, it will provide significant fundamental insights that can be utilized (i) to achieve the PI's long-term research goal and (ii) to develop other electrochemical systems that involve similar chemistries.Broader Impact: The proposed research has broader impact in terms of science and engineering, training and education. The fundamental insights obtained in this project have the potential to move the field of SOEs significantly forward by (i) determining the surface chemistry that governs the electrochemical reactions at the SOE electrodes and (ii) developing improved SOE electrode materials. In addition, these insights can be used to develop other systems that involve similar chemistries such as fuel cells and low temperature electrolyzers. This work will also contribute to the enhancement of the undergraduate and graduate curriculum at WSU. The PI plans to use the fundamental electrochemical insights obtained from this project to design a course, for senior undergraduate and graduate students, titled "Fundamentals of Electrochemistry'. In addition, the PI has arranged for undergraduate students from underrepresented minorities at WSU to work in the lab this summer through the Initiative for Maximizing Student Development (IMSD) and The Michigan-Louis Stokes Alliance for Minority Participation (LSAMP) Programs. The PI is establishing partnerships with the broader community and local high schools in the area to educate and inspire students from traditionally underrepresented minorities to pursue a career in science and engineering. More specifically, the PI is arranging field trips and demonstration experiments for 11th and 12th graders from the Pontiac and Bethune Alternative Academy High Schools in Pontiac, Michigan. In addition, she plans to recruit two senior high school students to work in her laboratory as a summer internship.
PI:Nikolla,Eranda提案编号:1226569智力优势:水的电解是一种从水中产生氢气的电化学过程。氢气是一种重要的能源和化学品,广泛应用于许多重要的工业过程。这种方法的缺点之一是它是能源密集型的。在这项提案中,我们描述了一种方法,该方法使用生物燃料的化学能,一种可再生能源-其加工不会导致净二氧化碳排放-使用固体氧化物电解槽(SOE)进行水电解。生物燃料辅助的国有企业是固态电解槽,原则上,可以在阳极电氧化任何含氧烃(即生物燃料),并利用其内部的化学能来驱动阴极的电化学水分解。 我们的初步研究结果表明,使用生物燃料(如乙醇)的国有企业面临的主要挑战是:(i)在阴极处的高过电位损失,这是由在传统阴极材料上分解水所需的高活化能势垒引起的,以及(ii)由于碳中毒,传统阳极材料的稳定性差。PI的长期研究目标是开发强大的SOE电极(阳极和阴极)材料,可以使用任何生物燃料来源的化学能从水中有效地产生纯H2。在这个为期两年的BRIGE提案中,总体目标是为乙醇辅助的SOE确定稳健的SOE阳极和阴极材料。我们将首先关注乙醇,因为它代表了一种合理的生物燃料模型,包含C-O和C-C键,这是任何生物燃料分子的特征。我们的中心假设是,通过与另一种元素(例如,阴极处的Ru、Rh和阳极处的Sn、Au、Ag)合金化来改性常规的Monclerous SOE电极材料(例如,阴极处的Ni、Co和阳极处的Ni)将引起母体金属表面的几何和电子变化,这将影响这些表面上的化学性质并导致改进的性能。我们建议采用实验/理论相结合的方法来挖掘表面化学,支配(i)的电化学水分解的过程中的阴极材料(如Ni,Co,Ni/Ru,Ni/Rh,Co/Ru和Co/Rh合金)和(ii)的阳极材料(如Ni和Ni/Sn,Ni/Ag和Ni/Au合金)的稳定性。这些信息将使我们能够识别具有最大活性和稳定性的电极材料。我们预计,这项工作将导致开发强大的国有企业系统,使用乙醇的化学能来驱动从水中生产清洁的H2。此外,它将提供重要的基本见解,可用于(i)实现PI的长期研究目标,(ii)开发涉及类似化学的其他电化学系统。更广泛的影响:拟议的研究在科学和工程,培训和教育方面具有更广泛的影响。该项目中获得的基本见解有可能通过(i)确定控制SOE电极电化学反应的表面化学和(ii)开发改进的SOE电极材料来显著推进SOE领域。此外,这些见解可用于开发涉及类似化学物质的其他系统,如燃料电池和低温电解槽。这项工作也将有助于提高WSU的本科生和研究生课程。PI计划使用从这个项目中获得的基本电化学见解来设计一门课程,为高年级本科生和研究生设计,名为“电化学基础”。此外,PI还安排来自WSU代表性不足的少数民族的本科生今年夏天通过最大限度地提高学生发展(IMSD)和少数民族参与(LSAMP)计划的里根-路易斯斯托克斯联盟在实验室工作。PI正在与该地区更广泛的社区和当地高中建立伙伴关系,以教育和激励传统上代表性不足的少数民族学生从事科学和工程职业。更具体地说,PI正在为密歇根州庞蒂亚克的庞蒂亚克和白求恩替代学院高中的11年级和12年级学生安排实地考察和示范实验。此外,她还计划招募两名高中生到她的实验室工作,作为暑期实习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eranda Nikolla其他文献
Realizing synergy between Cu, Ga, and Zr for selective COsub2/sub hydrogenation to methanol
实现铜、镓和锆之间的协同作用,用于二氧化碳选择性加氢制甲醇
- DOI:
10.1016/j.apcatb.2024.124198 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:21.100
- 作者:
Abdullah J. Al Abdulghani;Edgar E. Turizo-Pinilla;Maria J. Fabregas-Angulo;Ryan H. Hagmann;Faysal Ibrahim;Jacob H. Jansen;Theodore O. Agbi;Samiha Bhat;Miguel Sepúlveda-Pagán;Morgan O. Kraimer;Collin M. Queen;Zhuoran Sun;Eranda Nikolla;Yomaira J. Pagán-Torres;Ive Hermans - 通讯作者:
Ive Hermans
Strategies for Designing the Catalytic Environment Beyond the Active site of Heterogeneous Supported Metal Catalysts
- DOI:
10.1007/s11244-023-01835-2 - 发表时间:
2023-06-12 - 期刊:
- 影响因子:3.000
- 作者:
Samiha Bhat;Yomaira J. Pagán-Torres;Eranda Nikolla - 通讯作者:
Eranda Nikolla
Eranda Nikolla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eranda Nikolla', 18)}}的其他基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342024 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Conference: Support for U.S. Participants at the 18th International Congress on Catalysis
会议:为第 18 届国际催化大会美国与会者提供支持
- 批准号:
2419211 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
- 批准号:
2311986 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
- 批准号:
2333166 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Engineering Selectivity by Catalyst Architecture Control
合作研究:通过催化剂结构控制实现工程选择性
- 批准号:
2321164 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2306125 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧电池正极固-固界面化学工程
- 批准号:
2312634 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2116647 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Engineering the Chemistry at Solid-Solid Interfaces of Li-O2 Battery Cathodes
合作研究:锂氧气电池正极固-固界面化学工程
- 批准号:
1935581 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
New water-inserted perovskites for high-current-density water electrolysis
用于高电流密度水电解的新型插水钙钛矿
- 批准号:
DE240101013 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Early Career Researcher Award
Converting Biomass into Value-Added Catalysts for Water Electrolysis
将生物质转化为水电解的增值催化剂
- 批准号:
LP230100183 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Linkage Projects
Anionic Exchange Membrane water ELectrolysis for highLY efficIenTcy sustAinable, and clean Hydrogen production (AEMELIA)
阴离子交换膜水电解实现高效、可持续、清洁的氢气生产 (AEMELIA)
- 批准号:
10109547 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
EU-Funded
ADVANCE PEM - Advanced High Pressure and Cost-Effective PEM Water Electrolysis Technology
ADVANCE PEM - 先进的高压且经济高效的 PEM 水电解技术
- 批准号:
10063840 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
EU-Funded
Novel Science for Innovative Hydrogen Production Based on Analogy between Boiling and Water Electrolysis
基于沸腾和水电解类比的创新制氢新科学
- 批准号:
23H00282 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of Solid Polymer Electrolyte Water Electrolysis Anode Catalyst Based on Metastable Phase
基于亚稳相的固体聚合物电解质水电解阳极催化剂的研制
- 批准号:
23K13824 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unravelling the factors that control the activity and stability of catalysts for alkaline water electrolysis
揭示控制碱性水电解催化剂活性和稳定性的因素
- 批准号:
2888930 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Studentship
Efficient and selective water electrolysis for clean energy and environment
高效选择性水电解清洁能源和环境
- 批准号:
DP230100685 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Discovery Projects
Development of electrocatalysts for water electrolysis by tuning an electrolyte condition.
通过调节电解质条件开发用于水电解的电催化剂。
- 批准号:
23K13603 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advanced High Pressure and Cost-Effective PEM Water Electrolysis Technology
先进的高压且经济高效的 PEM 水电解技术
- 批准号:
10063956 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
EU-Funded