RUI: Nonintrusive Temperature Measurements in Compressible, Axisymmetric Shear Layers Using Two-Photon Stimulated Raman Excitation of Laser-Induced Gratings

RUI:使用激光诱导光栅的双光子受激拉曼激发对可压缩轴对称剪切层进行非侵入式温度测量

基本信息

  • 批准号:
    1232624
  • 负责人:
  • 金额:
    $ 30.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

1232624KuehnerThe ability to predict and control mixing between two fluids is important in many engineering applications, such as between the fuel and oxidizer in combustion. Mixing two fluids can also generate undesirable noise, for example the noise associated with the exhaust of a jet engine combining with the surrounding air. One area of particular concern is the turbulent mixing that occurs in the shear layer that forms between flows of two different speeds. The mixing governs the transport of fluid properties across that layer and contributes to the noise generated within the shear layer. The mixing characteristics and sound generation change as the difference in speeds between the two flows increases. By understanding the dynamics of the shear layer, the turbulent mixing and sound generation can be better predicted and potentially modified in practical applications. Instantaneous measurements of a quantity such as temperature can provide insight into the turbulent mixing that occurs in the shear layer, as mixing governs the fluctuations in such a quantity. Laser-induced gratings (LIG) is a nonintrusive method for acquiring instantaneous temperature at specific locations within the flow field. This project aims to improve the signal strength of LIG to expand its application to a wider range of flows and to apply this new LIG technique to subsonic and supersonic jet flows so that temperature can be acquired in shear layers for variable difference in speed between the two flows. The specific objectives for this project are to 1) determine the effects of the speed difference on temperature fluctuations in the shear layers, 2) highlight the dependence of mean and fluctuating temperature on flow structure, and 3) provide insight into the thermodynamics that contribute to sound generation and mixing.The intellectual merit of the research project encompasses an improved knowledge of the turbulent mixing that occurs in high-speed shear layers and an expanded capability of the LIG technique. The effect of compressibility, a measure of the speed difference between the flows, is a problem of practical importance that has been studied for several decades; however, measurements of the fluctuation properties crucial to understanding the problem have remained elusive. As the application of the LIG technique will be broadened to other high-speed flows, temperature can be acquired in other important flows in the future, such as planar shear layers, base flows, and jet injection flows.The broader impacts of this study include a better understanding of the compressible, turbulent dynamics that govern mixing and sound production. The effects of compressibility on turbulence have been documented, but the underlying physical causes have yet to be fully defined. Improved understanding will be critical to applications such as supersonic fuel injection in scramjet engines, rocket propulsion, and control of noise production in commercial aircraft. Moreover, as an RUI project, the investigation will occur at a small, liberal-arts, undergraduate university. Undergraduate research assistants will be employed during the academic year and over the summers to perform the experiments and present the results, providing invaluable experience for students of many backgrounds. The experimental apparatus will be used in the fluid-mechanics laboratory in the Physics and Engineering Department, providing research and learning experience for the undergraduate engineering majors.
预测和控制两种流体之间的混合的能力在许多工程应用中是重要的,例如在燃烧中的燃料和氧化剂之间。 混合两种流体也会产生不期望的噪声,例如与喷气发动机的排气结合周围空气相关联的噪声。 特别关注的一个领域是在两种不同速度的流之间形成的剪切层中发生的湍流混合。 混合控制着流体性质在该层上的传输,并有助于剪切层内产生的噪音。 混合特性和声音产生随着两种流之间的速度差的增加而改变。 通过了解剪切层的动力学,可以更好地预测湍流混合和声的产生,并可能在实际应用中进行修改。 对温度等量的瞬时测量可以提供对剪切层中发生的湍流混合的深入了解,因为混合控制了这种量的波动。 激光感生光栅(LIG)是一种非侵入式测量流场特定位置瞬时温度的方法。 该项目旨在提高LIG的信号强度,以将其应用范围扩展到更广泛的流动,并将这种新的LIG技术应用于亚音速和超音速射流,以便可以在两种流动之间的速度差异的剪切层中获得温度。 该项目的具体目标是:1)确定速度差对剪切层中温度波动的影响,2)突出平均温度和波动温度对流动结构的依赖性,以及3)提供对有助于声音产生和混合的热力学的深入了解。该研究项目的智力价值包括提高对发生在高温下的湍流混合的认识,高速剪切层和LIG技术的扩展能力。 可压缩性的影响,一个衡量流动之间的速度差,是一个具有实际意义的问题,已经研究了几十年;然而,测量的波动特性的关键理解的问题仍然难以捉摸。 由于LIG技术的应用将扩大到其他高速流动,温度可以在其他重要的流动,在未来获得,如平面剪切层,底部流,射流injection flow.The更广泛的影响,这项研究包括更好地了解可压缩,湍流动力学的混合和声音的产生。 可压缩性对湍流的影响已经有文献记载,但其潜在的物理原因尚未完全确定。 提高认识将是至关重要的应用,如超音速燃烧冲压喷气发动机,火箭推进,控制噪音生产的商业飞机。 此外,作为一个RUI项目,调查将发生在一个小型的文科本科大学。 本科生研究助理将在学年期间和夏季进行实验,并提出结果,为许多背景的学生提供宝贵的经验。 该实验装置将用于物理与工程系流体力学实验室,为工科本科生提供研究和学习经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Kuehner其他文献

Joel Kuehner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EAGER: Nonintrusive Engagement and Posture Detection in Virtual Classroom Environments
EAGER:虚拟教室环境中的非侵入式参与和姿势检测
  • 批准号:
    2333611
  • 财政年份:
    2023
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Standard Grant
Nonintrusive Fault Monitoring (NiFM)
非侵入式故障监控 (NiFM)
  • 批准号:
    132701
  • 财政年份:
    2017
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Feasibility Studies
Online Nonintrusive Identification and Monitoring of Internal Weak Points of Electro Energy Devices Using Package Surface Temperature
利用封装表面温度在线非侵入式识别和监测电能设备的内部薄弱点
  • 批准号:
    1663562
  • 财政年份:
    2017
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Standard Grant
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
  • 批准号:
    469020-2014
  • 财政年份:
    2017
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
  • 批准号:
    469020-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
  • 批准号:
    469020-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Nonintrusive load monitoring for diagnostics of residential energy use
用于诊断住宅能源使用的非侵入式负载监控
  • 批准号:
    486210-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Engage Grants Program
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
  • 批准号:
    469020-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Investigation of mathematical algorithms for use in nonintrusive appliance load monitoring
用于非侵入式设备负载监控的数学算法的研究
  • 批准号:
    443038-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CIF: Small: Nonintrusive Digital Speech Forensics: Source Identification and Content authentication
CIF:小型:非侵入式数字语音取证:源识别和内容身份验证
  • 批准号:
    0917104
  • 财政年份:
    2009
  • 资助金额:
    $ 30.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了