Online Nonintrusive Identification and Monitoring of Internal Weak Points of Electro Energy Devices Using Package Surface Temperature
利用封装表面温度在线非侵入式识别和监测电能设备的内部薄弱点
基本信息
- 批准号:1663562
- 负责人:
- 金额:$ 33.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electro-energy devices (such as batteries) play an essential role in modern society with their wide spread applications that span various sectors such as transportation, healthcare, communication and renewable energy generation to name a few. Currently, assessing the longevity of such devices while they are in operation is an extremely challenging task. As a result, there exists a huge risk of untimely failure of such devices in critical missions and/or situations leading to safety issues and financial loss. Currently, there are no general, effective approaches to online identification of internal weak points and monitoring of the aging processes and health conditions of different electro-energy devices while in operation. This project formulates and demonstrates new universal dynamic modeling and system identification methodologies for low-cost online identification and condition monitoring of internal weak points of electro energy devices using their package surface temperatures. The methodologies do not intrude upon the devices or interrupt their operation. The results of this research will enhance real-time, predictive condition awareness and improve the understanding of aging and failure mechanisms of electro energy devices, which will help in designing more reliable devices. Enhanced condition awareness and design will greatly improve safety and reliability and reduce the cost and financial risk of using electro energy devices. This project will provide interdisciplinary research training for graduate and undergraduate students and STEM education for K-12 school students focusing on dynamic system modeling and identification for energy systems applications.This project will create a new dynamic modeling and system identification-based universal mathematical framework for nonintrusive online identification and condition monitoring of internal weak points of electro energy devices using their thermal signature. The framework incorporates a new universal interpretation for the complex aging processes of internal weak points via the changes in the three-dimensional electrothermal dynamics of the devices estimated by measuring package surface temperatures. Based on this interpretation, a new mathematical modeling approach will be developed to adaptively characterize the aging-related electrothermal dynamics of the devices via high-fidelity, physics-based modeling, automated model order reduction with quantifiable error bounds, online parameter identification for the reduced-order model, and high-order model reconstruction. The identified parameters will contain information on locations, aging processes, and health conditions of the internal weak points and therefore can be used for condition monitoring of the electro energy devices. The framework will be validated by computer simulation and experimental studies to identify and monitor internal weak points of power semiconductor devices. In addition to electro energy devices, the research will provide enabling capabilities for modeling and diagnostics of other complex physical systems.
电能设备(如电池)在现代社会中发挥着至关重要的作用,其广泛的应用跨越各个部门,如交通,医疗保健,通信和可再生能源发电,仅举几例。目前,评估这些设备的使用寿命是一项极具挑战性的任务。因此,在关键任务和/或情况下,这种设备存在过早失效的巨大风险,从而导致安全问题和经济损失。目前,还没有一种通用的、有效的方法来在线识别各种电能装置的内部弱点,并监测其运行过程中的老化过程和健康状况。该项目制定并演示了新的通用动态建模和系统识别方法,用于利用封装表面温度对电能器件的内部弱点进行低成本在线识别和状态监测。这些方法不会侵入设备或中断其操作。该研究结果将增强实时、预测状态感知,提高对电能器件老化和失效机制的理解,有助于设计更可靠的器件。增强状态意识和设计将大大提高安全性和可靠性,降低使用电能装置的成本和财务风险。该项目将为研究生和本科生提供跨学科的研究培训,并为K-12学校的学生提供STEM教育,重点是能源系统应用的动态系统建模和识别。该项目将创建一个新的动态建模和基于系统识别的通用数学框架,用于利用其热特征对电能设备内部弱点进行非侵入式在线识别和状态监测。该框架结合了一种新的通用解释,通过测量封装表面温度估计器件的三维电热动力学变化来解释内部薄弱点的复杂老化过程。基于这一解释,将开发一种新的数学建模方法,通过高保真度、基于物理的建模、带有可量化误差界限的自动模型降阶、降阶模型的在线参数识别和高阶模型重建,自适应地表征器件的老化相关电热动力学。所确定的参数将包含有关内部薄弱点的位置、老化过程和健康状况的信息,因此可用于电能装置的状态监测。该框架将通过计算机模拟和实验研究来验证,以识别和监测功率半导体器件的内部弱点。除了电能设备外,该研究还将为其他复杂物理系统的建模和诊断提供支持能力。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Enhanced Hybrid Battery Model
- DOI:10.1109/tec.2019.2935700
- 发表时间:2019-12-01
- 期刊:
- 影响因子:4.9
- 作者:Kim, Taesic;Qiao, Wei;Qu, Liyan
- 通讯作者:Qu, Liyan
Enhanced Particle Filtering for Bearing Remaining Useful Life Prediction of Wind Turbine Drivetrain Gearboxes
- DOI:10.1109/tie.2018.2866057
- 发表时间:2019-06-01
- 期刊:
- 影响因子:7.7
- 作者:Cheng, Fangzhou;Qu, Liyan;Hao, Liwei
- 通讯作者:Hao, Liwei
Wind Turbine Drivetrain Gearbox Fault Diagnosis Using Information Fusion on Vibration and Current Signals
- DOI:10.1109/tim.2021.3083891
- 发表时间:2021
- 期刊:
- 影响因子:5.6
- 作者:Yayu Peng;W. Qiao;Fangzhou Cheng;Liyan Qu
- 通讯作者:Yayu Peng;W. Qiao;Fangzhou Cheng;Liyan Qu
A High-Accuracy, Low-Order Thermal Model of SiC MOSFET Power Modules Extracted from Finite Element Analysis via Model Order Reduction
通过模型降阶从有限元分析中提取 SiC MOSFET 功率模块的高精度、低阶热模型
- DOI:10.1109/ecce.2019.8912839
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Entzminger, Cameron;Qiao, Wei;Qu, Liyan;Hudgins, Jerry L.
- 通讯作者:Hudgins, Jerry L.
Compressive Sensing-Based Missing-Data-Tolerant Fault Detection for Remote Condition Monitoring of Wind Turbines
- DOI:10.1109/tie.2021.3057039
- 发表时间:2022-02
- 期刊:
- 影响因子:7.7
- 作者:Yayu Peng;W. Qiao;Liyan Qu
- 通讯作者:Yayu Peng;W. Qiao;Liyan Qu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Qiao其他文献
Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.
用于蛋白质纯化和浓缩的亲和整体集成微芯片。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Changlu Gao;Xiuhua Sun;Huaixin Wang;Wei Qiao;Bo Hu - 通讯作者:
Bo Hu
Responsible Eigenvalue Approach for Stability Analysis and Control Design of a Single-Delay Large-Scale System With Random Coupling Strengths
具有随机耦合强度的单延迟大规模系统的稳定性分析和控制设计的负责任特征值方法
- DOI:
10.1115/dscc2010-4082 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Wei Qiao;R. Sipahi - 通讯作者:
R. Sipahi
Building reliable keypoint matches by a cascade of classifiers with resurrection mechanism
通过具有复活机制的级联分类器构建可靠的关键点匹配
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jing Jing;Yong Li;Chunxiao Fan;Wei Qiao;Hongbin Jin - 通讯作者:
Hongbin Jin
Transcription factor Klf9 controls bile acid reabsorption and enterohepatic circulation in mice via promoting intestinal Asbt expression
转录因子Klf9通过促进肠道Asbt表达控制小鼠胆汁酸重吸收和肠肝循环
- DOI:
10.1038/s41401-021-00850-x - 发表时间:
2022-02 - 期刊:
- 影响因子:8.2
- 作者:
Shuainan Liu;Man Liu;Min Zhang;Cui-Zhe Wang;Zhanqing Li;Chun-Yuan Du;Su-Fang Sheng;Wei Wang;Ya-Tong Fan;Jia-Ni Song;Jiaojiao Huang;Yue-Yao Feng;Wei Qiao;Yongshun Li;Lu Zhou;Jun Zhang;Yongsheng Chang - 通讯作者:
Yongsheng Chang
VolQD: direct volume rendering of multi-million atom quantum dot simulations
VolQD:数百万原子量子点模拟的直接体积渲染
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Wei Qiao;D. Ebert;A. Entezari;M. Korkusiński;Gerhard Klimeck - 通讯作者:
Gerhard Klimeck
Wei Qiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Qiao', 18)}}的其他基金
PFI:AIR - TT: Self-X Smart Battery
PFI:AIR - TT: Self-X 智能电池
- 批准号:
1414393 - 财政年份:2014
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Cognitive Prediction-Enabled Online Intelligent Fault Diagnosis and Prognosis for Wind Energy Systems
支持认知预测的风能系统在线智能故障诊断和预测
- 批准号:
1308045 - 财政年份:2013
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Coordinating Control for the Next-Generation Electric Power System with Significant Wind Penetration
职业:具有显着风穿透力的下一代电力系统的随机优化和协调控制
- 批准号:
0954938 - 财政年份:2010
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Intelligent Optimal Mechanical Sensorless Control of Variable-Speed Wind Energy Systems Considering System Uncertainties
考虑系统不确定性的变速风能系统智能最优机械无传感器控制
- 批准号:
0901218 - 财政年份:2009
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Student and Junior Faculty Travel Support for the first IEEE Symposium on Power Electronics and Machines in Wind Applications (PEMWA 2009). To Be Held in Nebraska, on June 24-26,
为第一届 IEEE 风力应用电力电子和机器研讨会 (PEMWA 2009) 的学生和初级教师提供差旅支持。
- 批准号:
0921141 - 财政年份:2009
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Nonintrusive Engagement and Posture Detection in Virtual Classroom Environments
EAGER:虚拟教室环境中的非侵入式参与和姿势检测
- 批准号:
2333611 - 财政年份:2023
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
Nonintrusive Fault Monitoring (NiFM)
非侵入式故障监控 (NiFM)
- 批准号:
132701 - 财政年份:2017
- 资助金额:
$ 33.79万 - 项目类别:
Feasibility Studies
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
- 批准号:
469020-2014 - 财政年份:2017
- 资助金额:
$ 33.79万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
- 批准号:
469020-2014 - 财政年份:2016
- 资助金额:
$ 33.79万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
- 批准号:
469020-2014 - 财政年份:2015
- 资助金额:
$ 33.79万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Nonintrusive load monitoring for diagnostics of residential energy use
用于诊断住宅能源使用的非侵入式负载监控
- 批准号:
486210-2015 - 财政年份:2015
- 资助金额:
$ 33.79万 - 项目类别:
Engage Grants Program
A Novel Nonintrusive Multimodal Biometric System Using Online Social Network Based User Profiles
使用基于在线社交网络的用户配置文件的新型非侵入式多模式生物识别系统
- 批准号:
469020-2014 - 财政年份:2014
- 资助金额:
$ 33.79万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Investigation of mathematical algorithms for use in nonintrusive appliance load monitoring
用于非侵入式设备负载监控的数学算法的研究
- 批准号:
443038-2013 - 财政年份:2013
- 资助金额:
$ 33.79万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
RUI: Nonintrusive Temperature Measurements in Compressible, Axisymmetric Shear Layers Using Two-Photon Stimulated Raman Excitation of Laser-Induced Gratings
RUI:使用激光诱导光栅的双光子受激拉曼激发对可压缩轴对称剪切层进行非侵入式温度测量
- 批准号:
1232624 - 财政年份:2013
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant
CIF: Small: Nonintrusive Digital Speech Forensics: Source Identification and Content authentication
CIF:小型:非侵入式数字语音取证:源识别和内容身份验证
- 批准号:
0917104 - 财政年份:2009
- 资助金额:
$ 33.79万 - 项目类别:
Standard Grant