Stochastic Simulation Optimization: An Optimized Approach
随机模拟优化:一种优化方法
基本信息
- 批准号:1233376
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this award is to develop efficient simulation-based optimization methodologies to enable fast-time simulation-based decision making under uncertainty. Simulation and Optimization are two most popular tools in operations research. However, the combination of simulation and optimization is still facing huge efficiency concerns. A decision maker is forced to compromise on simulation accuracy, modeling accuracy, and the optimality of the selected solution. The research in this award intends to seek for a seamless integration of simulation evaluation and optimization search with focus on efficiency. A key contribution involves a trade-off between allocating computational resources for searching the solution space versus conducting additional simulation replications for better estimating the performance of current promising solutions. This research will develop a new Optimized Simulation Optimization (OSO) method which intends to maximize the overall efficiency of simulation optimization.If successful, the results of this research will provide a set of fast simulation-based optimization methodologies. With such methodologies, a decision maker will be able to model complex, stochastic systems, while obtaining the optimal design very efficiently. The benefit of developing an efficient simulation-based methodology is that it offers unprecedented flexibility to address a wide variety of problems in different application contexts. Example applications include revenue management systems, transportation systems, and manufacturing systems. An open-source simulation optimization software package based on the new methodologies will be developed and be available at a dedicated web site for dissemination purpose. The software will be easily accessible and beneficial to industry practitioners and academic researchers. It will also be usable in several different courses to educate students about simulation-based decision making.
该奖项的研究目标是开发有效的基于仿真的优化方法,以实现在不确定性下基于仿真的快速决策。模拟和优化是运筹学中两种最常用的工具。然而,模拟和优化的结合仍然面临着巨大的效率问题。决策者被迫在模拟精度、建模精度和所选解决方案的最优性上妥协。该奖项的研究旨在寻求模拟评估和优化搜索的无缝集成,重点是效率。一个关键的贡献涉及分配计算资源之间的权衡搜索的解决方案空间与进行额外的模拟复制,以更好地估计当前有前途的解决方案的性能。本研究将开发一种新的优化仿真优化方法(Optimized Simulation Optimization,OSO),以最大化仿真优化的整体效率,如果成功,本研究的成果将提供一套快速的基于仿真的优化方法。 有了这些方法,决策者将能够模拟复杂的随机系统,同时非常有效地获得最佳设计。开发基于仿真的高效方法的好处在于,它提供了前所未有的灵活性,可以在不同的应用环境中解决各种各样的问题。示例应用包括收入管理系统、运输系统和制造系统。将开发一个基于新方法的开放源码模拟优化软件包,并在一个专门网站上提供,以供传播。该软件将很容易获得,并有利于行业从业人员和学术研究人员。它也将在几个不同的课程中使用,以教育学生基于模拟的决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chun-Hung Chen其他文献
A Hybrid approach for integer programming combining genetic algorithms, linear programming and ordinal optimization
- DOI:
10.1023/a:1012256521687 - 发表时间:
2001-10-01 - 期刊:
- 影响因子:7.400
- 作者:
Yuh-Chyun Luo;Monique Guignard;Chun-Hung Chen - 通讯作者:
Chun-Hung Chen
A survey of the participants’ learning outcomes after finishing the dental radiology course for the continuing education of medical radiation technologists in Taiwan
- DOI:
10.1016/j.jds.2024.07.036 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Feng-Chou Cheng;Mu-Hsiung Chen;Yu-Wen Wang;Chun-Hung Chen;Kun-Lung Pin;Chien-Yi Ting;Chun-Pin Chiang - 通讯作者:
Chun-Pin Chiang
Efficient Sampling Allocation Procedure for Optimal Quantile Selection
用于最佳分位数选择的高效抽样分配程序
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.1
- 作者:
Yijie Peng;Chun-Hung Chen;Michael C. Fu;Jian-Qiang Hu;Ilya O. Ryzhov - 通讯作者:
Ilya O. Ryzhov
Ventricular tachycardia manifested as tonic seizure
- DOI:
10.1016/j.yebeh.2012.03.007 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:
- 作者:
Hsiu-Ching Yin;Meng-Ni Wu;Chun-Hung Chen;Poyin Huang - 通讯作者:
Poyin Huang
Efficient sampling for simulation-based optimization under uncertainty
- DOI:
10.1109/isuma.2003.1236190 - 发表时间:
2003-09 - 期刊:
- 影响因子:0
- 作者:
Chun-Hung Chen - 通讯作者:
Chun-Hung Chen
Chun-Hung Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chun-Hung Chen', 18)}}的其他基金
Collaborative Research: ITR: Very Efficient Network Simulation Methods for Auctioning and Collaborative Models of Air Traffic Management
合作研究:ITR:用于拍卖和空中交通管理协作模型的非常有效的网络仿真方法
- 批准号:
0325074 - 财政年份:2003
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
SGER: Very Efficient Simulation for Engineering Design Problems
SGER:针对工程设计问题的非常高效的仿真
- 批准号:
0049062 - 财政年份:2000
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
SGER: Very Efficient Simulation for Engineering Design Problems
SGER:针对工程设计问题的非常高效的仿真
- 批准号:
0002900 - 财政年份:2000
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Engineering Sciences for Modeling and Simulation-Based Life-Cycle Engineering: An Engineering Design Framework Integrating Robust Optimization and Structured Simulation
基于建模和仿真的生命周期工程的工程科学:集成鲁棒优化和结构化仿真的工程设计框架
- 批准号:
9732173 - 财政年份:1998
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
- 批准号:
10323474 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Addressing Input Model Uncertainty in Stochastic Simulation: From Quantification to Optimization
解决随机仿真中的输入模型不确定性:从量化到优化
- 批准号:
2053489 - 财政年份:2021
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
- 批准号:
500414-2016 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Collaborative Research and Development Grants
New technology contributions to the sustainable development of mineral resources: Developing a holistic stochastic simulation - optimization paradigm
新技术对矿产资源可持续发展的贡献:开发整体随机模拟-优化范式
- 批准号:
RGPIN-2016-05760 - 财政年份:2020
- 资助金额:
$ 26万 - 项目类别:
Discovery Grants Program - Individual
New technology contributions to the sustainable development of mineral resources: Developing a holistic stochastic simulation - optimization paradigm
新技术对矿产资源可持续发展的贡献:开发整体随机模拟-优化范式
- 批准号:
RGPIN-2016-05760 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Discovery Grants Program - Individual
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
- 批准号:
500414-2016 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Collaborative Research and Development Grants
Smart mining complexes: large-scale stochastic optimization, high-order simulation and self-learning decision support systems for sustainable development of mineral resources
智能矿山综合体:矿产资源可持续发展的大规模随机优化、高阶模拟和自学习决策支持系统
- 批准号:
500414-2016 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Collaborative Research and Development Grants
New technology contributions to the sustainable development of mineral resources: Developing a holistic stochastic simulation - optimization paradigm
新技术对矿产资源可持续发展的贡献:开发整体随机模拟-优化范式
- 批准号:
RGPIN-2016-05760 - 财政年份:2018
- 资助金额:
$ 26万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1653339 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1834710 - 财政年份:2017
- 资助金额:
$ 26万 - 项目类别:
Standard Grant