Addressing Input Model Uncertainty in Stochastic Simulation: From Quantification to Optimization
解决随机仿真中的输入模型不确定性:从量化到优化
基本信息
- 批准号:2053489
- 负责人:
- 金额:$ 9.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simulation and optimization techniques are often used to evaluate system performance and facilitate decision making in complex and stochastic systems. This project aims to quantify the risk associated with simulation modeling and analysis, and to design robust and risk-aware strategies for decision making based on simulation. Because of the generality of the proposed approaches, the resulting techniques will have broad applicability in a wide array of industry and science sectors. Through collaborations with researchers in industry, the developed algorithms will be tested on and applied to problems in the application area of sharing economy. This project will also provide training opportunities for underrepresented groups through recruiting and outreach activities. Stochastic simulation is often used for performance analysis and decision making in complex systems. The input to the simulations is a collection of distributions based on data, and uncertainty in the input brings significant risk to decision making. The goal of this project is to develop theory and methods that quantify the risk associated with input uncertainty, support decision making systems that are robust to the risk associated with the input uncertainty, and handle streaming data which arrive sequentially in time. The project consists of three major research thrusts including a) online quantification of input model uncertainty developed with convergence guarantees for both parametric and non-parametric input models, b) simulation optimization under input model uncertainty within a new framework of Bayesian risk optimization which aims to balance optimizing the expected performance and hedging against the input model risk, and c) ranking and selection under input model uncertainty for which new algorithms will be developed with convergence rate results; these will take into account the trade-off between reducing the input uncertainty via collecting more data and reducing the simulation uncertainty by running more simulation experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
仿真和优化技术通常用于评估系统性能,并促进复杂和随机系统的决策。该项目旨在量化与仿真建模和分析相关的风险,并为基于仿真的决策制定设计鲁棒性和风险意识策略。由于所提出的方法的一般性,所产生的技术将在广泛的工业和科学领域具有广泛的适用性。通过与行业研究人员的合作,开发的算法将被测试并应用于共享经济应用领域的问题。该项目还将通过征聘和外联活动为任职人数不足的群体提供培训机会。 随机模拟常用于复杂系统的性能分析和决策。模拟的输入是基于数据的分布集合,输入的不确定性给决策带来了重大风险。该项目的目标是开发量化与输入不确定性相关的风险的理论和方法,支持对与输入不确定性相关的风险具有鲁棒性的决策系统,并处理按时间顺序到达的流数据。该项目包括三个主要的研究方向,包括a)在线量化输入模型的不确定性,为参数和非参数输入模型提供收敛保证,B)在贝叶斯风险优化的新框架内,在输入模型不确定性下进行仿真优化,旨在平衡优化预期性能和对冲输入模型风险,以及c)在输入模型不确定性下的排序和选择,对于该输入模型不确定性,将开发具有收敛速度结果的新算法;这些建议会考虑到业界的情况:通过收集更多的数据来减少输入不确定性和通过运行更多的模拟实验来减少模拟不确定性之间的差距。基金会的使命是履行其使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评价,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Risk-averse Contextual Multi-armed Bandit Problem with Linear Payoffs
具有线性收益的风险规避上下文多臂老虎机问题
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.2
- 作者:Yifan Lin;Yuhao Wang;Enlu Zhou
- 通讯作者:Enlu Zhou
Fixed Budget Ranking and Selection with Streaming Input Data
- DOI:10.1109/wsc57314.2022.10015327
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Yuhao Wang;Enlu Zhou
- 通讯作者:Yuhao Wang;Enlu Zhou
Risk-Aware Model Predictive Control Enabled by Bayesian Learning
贝叶斯学习支持的风险感知模型预测控制
- DOI:10.23919/acc53348.2022.9867207
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Yingke;Lin, Yifan;Zhou, Enlu;Zhang, Fumin
- 通讯作者:Zhang, Fumin
Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Tianyi Liu;Yan Li;Enlu Zhou;Tuo Zhao
- 通讯作者:Tianyi Liu;Yan Li;Enlu Zhou;Tuo Zhao
Robust Multi-Objective Bayesian Optimization Under Input Noise
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Sam Daulton;Sait Cakmak;M. Balandat;Michael A. Osborne;Enlu Zhou;E. Bakshy
- 通讯作者:Sam Daulton;Sait Cakmak;M. Balandat;Michael A. Osborne;Enlu Zhou;E. Bakshy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enlu Zhou其他文献
Integrated Task and Motion Planning for Process-aware Source Seeking
用于过程感知源搜索的集成任务和运动规划
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yingke Li;Mengxue Hou;Enlu Zhou;Fumin Zhang - 通讯作者:
Fumin Zhang
Robust ranking and selection with optimal computing budget allocation
具有最佳计算预算分配的稳健排名和选择
- DOI:
10.1016/j.automatica.2017.03.019 - 发表时间:
2017-07 - 期刊:
- 影响因子:6.4
- 作者:
Siyang Gao;Hui Xiao;Enlu Zhou;Weiwei Chen - 通讯作者:
Weiwei Chen
Ranking and selection under input uncertainty: A budget allocation formulation
输入不确定性下的排名和选择:预算分配公式
- DOI:
10.1109/wsc.2017.8247956 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Di Wu;Enlu Zhou - 通讯作者:
Enlu Zhou
Toward Deeper Understanding of Nonconvex Stochastic Optimization with Momentum using Diffusion Approximations
使用扩散近似更深入地理解带有动量的非凸随机优化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Tianyi Liu;Zhehui Chen;Enlu Zhou;T. Zhao - 通讯作者:
T. Zhao
Pricing American options under partial observation of stochastic volatility
部分观察随机波动性下的美式期权定价
- DOI:
10.1109/wsc.2011.6148068 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Fan Ye;Enlu Zhou - 通讯作者:
Enlu Zhou
Enlu Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enlu Zhou', 18)}}的其他基金
CAREER: Optimization and Sampling in Stochastic Simulation
职业:随机模拟中的优化和采样
- 批准号:
1453934 - 财政年份:2015
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
Collaborative Research: A New Paradigm for Simulation Optimization: Marriage between Expectation-Maximization and Model-Based Optimization
协作研究:仿真优化的新范式:期望最大化与基于模型的优化的结合
- 批准号:
1413790 - 财政年份:2013
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
Collaborative Research: A New Paradigm for Simulation Optimization: Marriage between Expectation-Maximization and Model-Based Optimization
协作研究:仿真优化的新范式:期望最大化与基于模型的优化的结合
- 批准号:
1130273 - 财政年份:2011
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
相似海外基金
Damping model required for seismic design using large-scale 3D model with multi-directional input
使用具有多方向输入的大型 3D 模型进行抗震设计所需的阻尼模型
- 批准号:
22H01645 - 财政年份:2022
- 资助金额:
$ 9.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2246281 - 财政年份:2022
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
Blind estimation of the arterial input function in MRI to model fluid transport in tissues and tumours
盲目估计 MRI 中的动脉输入功能来模拟组织和肿瘤中的液体输送
- 批准号:
2745301 - 财政年份:2022
- 资助金额:
$ 9.97万 - 项目类别:
Studentship
Research on the input trade model with Keynesian unemployment: A theoretical foundation of international input-output analysis
凯恩斯主义失业下的投入贸易模型研究:国际投入产出分析的理论基础
- 批准号:
21K01437 - 财政年份:2021
- 资助金额:
$ 9.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2045400 - 财政年份:2021
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
Multi-Input Multi-Output Model-Based Adaptive Control with N on-linear models
基于多输入多输出模型的N个非线性模型自适应控制
- 批准号:
2746093 - 财政年份:2021
- 资助金额:
$ 9.97万 - 项目类别:
Studentship
Study on methods for identifying key sectors by the regional input-output model
区域投入产出模型识别重点行业方法研究
- 批准号:
19K01672 - 财政年份:2019
- 资助金额:
$ 9.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Economic Analysis of the Impact of Female Labor Supply on an Aging Japan within an Integrated Dynamic and Static Computable General Equilibrium Model with the Input-Output Table
基于投入产出表的动静态综合可计算一般均衡模型中女性劳动力供给对日本老龄化影响的经济分析
- 批准号:
19K01704 - 财政年份:2019
- 资助金额:
$ 9.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Model-Free Input Screening and Sensitivity Analysis in Simulation Metamodeling
职业:仿真元建模中的无模型输入筛选和敏感性分析
- 批准号:
1846663 - 财政年份:2019
- 资助金额:
$ 9.97万 - 项目类别:
Standard Grant
A system of regional administrative units composed of several prefectures on inter-regional input-output model
多个地市组成的区域行政单位体系的区域间投入产出模型
- 批准号:
19K01652 - 财政年份:2019
- 资助金额:
$ 9.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)