CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
基本信息
- 批准号:1834710
- 负责人:
- 金额:$ 49.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) Program research project will create a systematic framework for designing, analyzing, and implementing statistical methods for uncertainty quantification that effectively integrate data into stochastic and simulation analyses. These analyses arise routinely in performance evaluations, risk analytics, and decision-making tasks in policymaking and many industries. The recent expansion of industrial system complexities challenges the use of conventional statistical methods in assimilating data, due to the heavy computational burden of high-fidelity simulation models, the intrinsic high dimensionality of stochastic problems, and the structural complications of data-system integration. The research program will blend the use of computational simulation with nonparametric statistics and modern optimization tools to produce methodologies that are both statistically accurate and computationally efficient. If successful, the research outcomes will aid in developing data-driven simulation-based tools for evaluating automated vehicle safety. The tools will be disseminated to relevant governmental and industrial units through institutional collaborative networks and online public channels. The research will also provide reliable, data-driven methodologies to assess risks and calibrate the simulation platforms used in various industries vital to the domestic economy. The education program will expand the undergraduate simulation curriculum, develop a new interdisciplinary graduate course, and provide practical case studies on the societal roles of the engineering profession. The education program will also provide training for graduate students and create undergraduate research opportunities, especially for under-represented minorities in engineering and data science.The specific research objectives will develop statistical uncertainty quantification methods in four fundamental problems in stochastic and simulation analyses: 1) Rare-event prediction and computation; 2) Propagation of input model errors in simulation analysis; 3) Calibration of stochastic input models from output data; and 4) Quantification and enrichment of the feasibility of obtained solutions in data-driven stochastic optimization. Each problem presents distinct challenges arising from small-sample bias, immense computational burden, high dimensionality, or over-conservativeness that impedes the effectiveness of existing methods. The research will emphasize a unified framework to generate performance estimates using new formulations and analyses of optimization programs posited over stochastic spaces, with constraints derived or justified via nonparametric statistical methods. The research will encompass the development of confidence bounds and the quantification of robustness to model misspecification, and the algorithmic analyses that ensure computational tractability in terms of optimization and simulation efficiencies. The techniques developed will cross-fertilize areas across Monte Carlo simulation, stochastic and robust optimization, and statistics. The research outcomes will also equip next-generation engineers with multi-faceted perspectives in using computational and statistical tools that will benefit their future careers.
该教师早期职业发展(CAREER)计划研究项目将创建一个系统的框架,用于设计,分析和实施不确定性量化的统计方法,有效地将数据集成到随机和模拟分析中。这些分析经常出现在政策制定和许多行业的绩效评估、风险分析和决策任务中。最近工业系统的复杂性的扩展挑战使用传统的统计方法在同化数据,由于高保真仿真模型,随机问题的内在高维的沉重的计算负担,和数据系统集成的结构复杂性。该研究计划将结合使用计算模拟与非参数统计和现代优化工具,以产生统计准确和计算效率高的方法。如果成功,研究成果将有助于开发基于数据驱动的仿真工具,以评估自动驾驶汽车的安全性。这些工具将通过机构合作网络和在线公共渠道传播给相关的政府和行业单位。该研究还将提供可靠的数据驱动方法,以评估风险并校准对国内经济至关重要的各个行业所使用的模拟平台。该教育计划将扩大本科模拟课程,开发新的跨学科研究生课程,并提供有关工程专业社会角色的实际案例研究。该教育计划还将为研究生提供培训,并为本科生创造研究机会,特别是为工程和数据科学领域代表性不足的少数民族创造机会。具体研究目标将在随机和模拟分析中的四个基本问题中发展统计不确定性量化方法:1)稀有事件预测和计算; 2)模拟分析中输入模型误差的传播; 3)根据输出数据校准随机输入模型;以及4)量化和丰富数据驱动随机优化中获得的解决方案的可行性。 每个问题都提出了不同的挑战,小样本偏差,巨大的计算负担,高维,或过度保守,阻碍了现有方法的有效性。 该研究将强调一个统一的框架,以产生性能估计使用新的配方和分析的优化程序假设在随机空间,通过非参数统计方法导出或证明的约束。 该研究将包括发展的置信界限和量化的鲁棒性模型的误设定,并在优化和仿真效率方面的算法分析,以确保计算的易处理性。 开发的技术将交叉施肥领域在蒙特卡洛模拟,随机和强大的优化,统计。 研究成果还将使下一代工程师在使用计算和统计工具方面具有多方面的观点,这将有利于他们未来的职业生涯。
项目成果
期刊论文数量(41)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SAMPLING UNCERTAIN CONSTRAINTS UNDER PARAMETRIC DISTRIBUTIONS
- DOI:10.1109/wsc.2018.8632432
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:H. Lam;Fengpei Li
- 通讯作者:H. Lam;Fengpei Li
Doubly Robust Stein-Kernelized Monte Carlo Estimator: Simultaneous Bias-Variance Reduction and Supercanonical Convergence
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:H. Lam;Haofeng Zhang
- 通讯作者:H. Lam;Haofeng Zhang
Calibrating Input Parameters via Eligibility Sets
通过资格集校准输入参数
- DOI:10.1109/wsc48552.2020.9383885
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bai, Yuanlu;Lam, Henry
- 通讯作者:Lam, Henry
ON EFFICIENCIES OF STOCHASTIC OPTIMIZATION PROCEDURES UNDER IMPORTANCE SAMPLING
- DOI:10.1109/wsc.2018.8632321
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:H. Lam;Guangxin Jiang;M. Fu
- 通讯作者:H. Lam;Guangxin Jiang;M. Fu
Batching on biased estimators
对有偏估计量进行批处理
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:He, Shengyi;Lam, Henry
- 通讯作者:Lam, Henry
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Henry Lam其他文献
jPOSTdb: COVID-19データベースの構築
jPOSTdb:构建 COVID-19 数据库
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tim Van Den Bossche;Eric W. Deutsch;Yasset Perez-Riverol;Jeremy Carver;Shin Kawano;Luis Mendoza;Ralf Gabriels;Pierre-Alain Binz;Benjamin Pullman;Zhi Sun;Jim Shofstahl;Wout Bittremieux;Tytus D. Mak;Joshua Klein;Yunping Zhu;Henry Lam;Juan An;吉沢明康;吉沢明康,守屋勇樹,小林大樹,張智翔,奥田修二郎,田畑剛,河野信,幡野敦,高見知代,松本雅記,山ノ内祥訓,荒木令江,岩崎未央,杉山直幸,福島敦史,田中聡,五斗進,石濱 泰 - 通讯作者:
吉沢明康,守屋勇樹,小林大樹,張智翔,奥田修二郎,田畑剛,河野信,幡野敦,高見知代,松本雅記,山ノ内祥訓,荒木令江,岩崎未央,杉山直幸,福島敦史,田中聡,五斗進,石濱 泰
Spectral archives: a vision for future proteomics data repositories
光谱档案:未来蛋白质组学数据库的愿景
- DOI:
10.1038/nmeth.1633 - 发表时间:
2011-06-29 - 期刊:
- 影响因子:32.100
- 作者:
Henry Lam - 通讯作者:
Henry Lam
304 ELIMINATING THE MISUSE OF FECAL OCCULT BLOOD TESTING (FOBT) IN THE HOSPITAL SETTING
- DOI:
10.1016/s0016-5085(24)00643-7 - 发表时间:
2024-05-18 - 期刊:
- 影响因子:
- 作者:
Henry Lam;Amy Slenker;Eric Nellis - 通讯作者:
Eric Nellis
Enteral and parenteral nutrition in cancer patients, a comparison of complication rates: an updated systematic review and (cumulative) meta-analysis
- DOI:
10.1007/s00520-019-05145-w - 发表时间:
2019-12-07 - 期刊:
- 影响因子:3.000
- 作者:
Ronald Chow;Eduardo Bruera;Jann Arends;Declan Walsh;Florian Strasser;Elisabeth Isenring;Egidio G. Del Fabbro;Alex Molassiotis;Monica Krishnan;Leonard Chiu;Nicholas Chiu;Stephanie Chan;Tian Yi Tang;Henry Lam;Michael Lock;Carlo DeAngelis - 通讯作者:
Carlo DeAngelis
A Shrinkage Approach to Improve Direct Bootstrap Resampling Under Input Uncertainty
输入不确定性下改进直接引导重采样的收缩方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.1
- 作者:
Eunhye Song;Henry Lam;Russell R. Barton - 通讯作者:
Russell R. Barton
Henry Lam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Henry Lam', 18)}}的其他基金
S&AS:FND:COLLAB:Unsupervised Rare Event Learning - With Applications on Autonomous Vehicles
S
- 批准号:
1849280 - 财政年份:2019
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1653339 - 财政年份:2017
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
- 批准号:
1523453 - 财政年份:2015
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and Analyzing Extreme Risks in Insurance and Finance
合作研究:保险和金融极端风险的建模和分析
- 批准号:
1436247 - 财政年份:2014
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
A Sensitivity Approach to Assessing Model Uncertainty for Stochastic Systems
评估随机系统模型不确定性的灵敏度方法
- 批准号:
1400391 - 财政年份:2014
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 49.43万 - 项目类别:
Continuing Grant
CAREER: Explanation-based Optimization of Diversified Information Retrieval to Enhance AI Systems
职业:基于解释的多样化信息检索优化以增强人工智能系统
- 批准号:
2339932 - 财政年份:2024
- 资助金额:
$ 49.43万 - 项目类别:
Continuing Grant
CAREER: Optimization-Based Computational Discovery of Decision-Making Processes
职业:基于优化的决策过程计算发现
- 批准号:
2044077 - 财政年份:2021
- 资助金额:
$ 49.43万 - 项目类别:
Continuing Grant
CAREER: Machine Learning Based 4D Decomposition and Distributed Optimization
职业:基于机器学习的 4D 分解和分布式优化
- 批准号:
1944752 - 财政年份:2020
- 资助金额:
$ 49.43万 - 项目类别:
Continuing Grant
CAREER: Search-Based Optimization of Combinatorial Structures via Expensive Experiments
职业:通过昂贵的实验进行基于搜索的组合结构优化
- 批准号:
1845922 - 财政年份:2019
- 资助金额:
$ 49.43万 - 项目类别:
Continuing Grant
CAREER: Tackling Congestion in Smart Cities via Data-Driven Optimization-Based Control of Connected and Automated Vehicles
职业:通过数据驱动的基于优化的联网和自动化车辆控制解决智能城市的拥堵问题
- 批准号:
1846795 - 财政年份:2019
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
CAREER: A Scalable Optimization-Based Framework for Modeling and Analysis of Cascading Failures
职业生涯:基于优化的可扩展框架,用于级联故障建模和分析
- 批准号:
1750531 - 财政年份:2018
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
CAREER: Decentralized Constraint-Based Optimization for Multi-Agent Planning and Coordination
职业:用于多智能体规划和协调的分散式基于约束的优化
- 批准号:
1838364 - 财政年份:2017
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1653339 - 财政年份:2017
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant
CAREER: Decentralized Constraint-Based Optimization for Multi-Agent Planning and Coordination
职业:用于多智能体规划和协调的分散式基于约束的优化
- 批准号:
1550662 - 财政年份:2016
- 资助金额:
$ 49.43万 - 项目类别:
Standard Grant