DMREF: Collaborative Research - Programmable peptide-based hybrid materials

DMREF:协作研究 - 可编程肽基混合材料

基本信息

  • 批准号:
    1234161
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

ID: MPS/DMR/BMAT(7623) 1235084 PI: Pochan, Darrin ORG: University of DelawareID: MPS/DMR/BMAT(7623) 1234161 PI: Saven, Jeffrey ORG: University of PennsylvaniaTitle: DMREF: Collaborative Research - Programmable peptide-based hybrid materialsTECHNICALBiologically-derived proteins and peptides assemble to yield complex structures and functions (e.g. viruses). In contrast, much simpler assemblies typically result (e.g. spherical micelles) when synthetic macromolecules are employed. The sophistication of protein and peptide structures is possible because of their (1) versatile, heteropolymeric chemistry (i.e., amino acid sequences), (2) defined secondary structures (i.e. molecular conformations such as beta-sheets, alpha-helices, and other turns and coils) that provide for specific, local shapes to display amino-acid functionality,(3) well-defined, intramolecular, folded conformations (tertiary structure), and (4) well-ordered quaternary, or intermolecular, structure through the assembly of multiple polypeptide chains. As in nature, the potential exists to build new complex structures and functions via the careful choice of the sequence of amino acids in a polypeptide. This DMREF effort will elucidate fundamental principles and methods for the design of nonnatural one- and two-dimensional polypeptide assemblies. The solution assembly of these designed peptides will be characterized experimentally, and they will be functionalized to realize polypeptide/metal nanoparticle hybrid materials. Theoretical approaches for the design of polypeptide assemblies will be applied and refined in an intimate collaboration with experimental studies. The chemical versatility of peptides will be harnessed to explore and exploit solution assembly processes that are hierarchical, multicomponent, thermodynamically preferred and/or kinetically controlled. Comprehensive nanoscale- through-microscale characterization of the polypeptide assembly, structural intermediates, and final materials will inform future iterations of theory and solution processing. The development of these approaches to materials assembly will facilitate the technological goal of creating robust, solution-assembly methods to produce metal nanoparticle arrays with controlled interparticle spacing and symmetry.NON-TECHNICALThis collaborative effort parallels goals of the Materials Genome Initiative. Concepts and methods for predictive materials discovery will be developed in the context of theory-driven design of polypeptides that assemble into targeted materials and nanostructures. New experimental methods for studying and guiding molecular assembly in solution will be refined to monitor polypeptide assembly and to build polypeptide/nanoparticle materials with hierarchical complexity. The close interaction of theory and experiment is essential in the development of a predictive understanding of these materials. The concepts and methods so developed will speed the discovery of new polypeptide-based hybrid materials, and the use of the peptides to specify the arrangement and positioning of metal nanoparticles, has a variety of potential applications, including enhancement of light capture in photovoltaic cells. This collaboration will provide undergraduates, graduate students, and post-doctoral researchers at the University of Delaware and University of Pennsylvania with multidisciplinary knowledge and expertise in the design, modeling, fabrication, and characterization of peptide-based biomaterials. This physical science effort will coordinate with the Interdisciplinary Humanities Research Center at the University of Delaware. Journalism students and faculty associated with the environmental humanities program will work with the DMREF science team. This effort will produce: (1) researchers better trained in communicating science to the general public and in describing the impact of the science and any eventual technology, and (2) future journalists with experience in multidisciplinary research who are skilled in assimilating scientific nuance and complexity into discussions of the research and its impact.
ID:MPS/DMR/BMAT(7623)1235084 主要研究者:Pochan,Darrin ORG:特拉华大学ID:MPS/DMR/BMAT(7623)1234161 PI:Saven,Jeffrey ORG:宾夕法尼亚大学标题:DMREF:合作研究-基于可编程肽的混合材料生物衍生的蛋白质和肽组装产生复杂的结构和功能(例如病毒)。 相比之下,当使用合成大分子时,通常产生简单得多的组装体(例如球形胶束)。 蛋白质和肽结构的复杂化是可能的,因为它们(1)多功能的、杂聚的化学(即,氨基酸序列),(2)提供特定的局部形状以显示氨基酸功能性的确定的二级结构(即分子构象,如β-折叠、α-螺旋和其它转角和卷曲),(3)明确的分子内折叠构象(三级结构),和(4)通过多个多肽链的组装而有序的四级或分子间结构。 在自然界中,通过仔细选择多肽中的氨基酸序列,存在构建新的复杂结构和功能的潜力。 这DMREF的努力将阐明非天然的一维和二维多肽组件的设计的基本原则和方法。 这些设计的肽的溶液组装将通过实验表征,并且它们将被功能化以实现多肽/金属纳米颗粒杂化材料。 多肽组装体设计的理论方法将与实验研究密切合作应用和完善。 肽的化学多功能性将被利用来探索和利用分层的、多组分的、化学上优选的和/或动力学上控制的溶液组装过程。 多肽组装体、结构中间体和最终材料的全面纳米尺度到微米尺度的表征将为理论和溶液处理的未来迭代提供信息。 这些材料组装方法的发展将促进技术目标的创造强大的,解决方案的组装方法,以生产金属纳米粒子阵列与控制粒子间的间距和对称性。 预测材料发现的概念和方法将在理论驱动的多肽设计的背景下开发,这些多肽组装成目标材料和纳米结构。 研究和指导溶液中分子组装的新实验方法将被改进,以监测多肽组装和构建具有层次复杂性的多肽/纳米颗粒材料。 理论和实验的密切相互作用是至关重要的,在这些材料的预测性理解的发展。 如此开发的概念和方法将加速新的基于多肽的杂化材料的发现,并且使用肽来指定金属纳米颗粒的排列和定位具有多种潜在应用,包括增强光伏电池中的光捕获。 这项合作将为特拉华州大学和宾夕法尼亚大学的本科生、研究生和博士后研究人员提供基于肽的生物材料的设计、建模、制造和表征方面的多学科知识和专业知识。 这项物理科学的工作将与特拉华州大学的跨学科人文研究中心协调。 与环境人文项目相关的新闻专业学生和教师将与DMREF科学团队合作。 这一努力将产生:(1)在向公众传播科学和描述科学及任何最终技术的影响方面受过更好培训的研究人员,以及(2)具有多学科研究经验的未来记者,他们善于将科学的细微差别和复杂性融入研究及其影响的讨论中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffery Saven其他文献

Jeffery Saven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffery Saven', 18)}}的其他基金

Collaborative Research: De novo Protein Constructs for Photosynthetic Energy Transduction
合作研究:用于光合能量转导的从头蛋白质构建体
  • 批准号:
    1709518
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: De novo Protein Constructs for Photosynthetic Energy Transduction
合作研究:用于光合能量转导的从头蛋白质构建体
  • 批准号:
    1412496
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Research: Probing the Folding Kinetics and Stability of Proteins with Theoretically Designed Energy Landscapes
美日合作研究:利用理论设计的能量景观探索蛋白质的折叠动力学和稳定性
  • 批准号:
    0087974
  • 财政年份:
    2001
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Theory and simulation of folding polymers
职业:折叠聚合物的理论和模拟
  • 批准号:
    9984752
  • 财政年份:
    2000
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowships in Chemistry
化学博士后研究奖学金
  • 批准号:
    9301474
  • 财政年份:
    1993
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship Award

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了