Collaborative Research: Uncertainty Quantification and Model Validation in Thin-Walled Structures: A Probabilistic Paradigm for Advancing Analysis-Based Design
合作研究:薄壁结构中的不确定性量化和模型验证:推进基于分析的设计的概率范式
基本信息
- 批准号:1235238
- 负责人:
- 金额:$ 21.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will pursue research towards an advanced framework for nonlinear stability analysis of thin-walled structures taking into account the uncertainty associated with geometric imperfections. Thin-walled structures most commonly fail in buckling failure mode. Whether this buckling is benign or catastrophic depends, to a great extent, on the details of the structure, most importantly its geometric imperfections. The research aims at providing a leap towards uncertainty quantification and model validation in the analysis of thin-walled structures by devising a probabilistic paradigm that uses advanced uncertainty quantification techniques along with novel structural analysis methods. Methodologies for the characterization and representation of geometric uncertainties as well as probabilistic imperfection sensitivity analysis frameworks are proposed that have the potential to pave the way for a fully stochastic nonlinear analysis of thin-walled structures. The proposed techniques are complemented by experimental measurements of imperfections with high accuracy, and testing of imperfect members.If successful, the results of this research will transform how geometric imperfections are handled in advanced analysis-based design of thin-walled structures. Because of the very general and mathematics-driven nature of the stochastic approaches adopted in this project, the methodologies developed will be applicable to a wide variety of problems and will have potential impact across all science and engineering disciplines. Alongside graduate student mentoring, undergraduate research will be a focus of the efforts at both University of Massachusetts Dartmouth (UMD) and Johns Hopkins University (JHU). The involved undergraduates will be asked to share their experience with students at local high schools and a community college as well as students attending Freshman Summer Institute at UMD, in hopes that their success will be emulated by others. Also, in collaboration with programs that specifically target underrepresented groups, qualified students are invited to participate in research at both universities. In addition to academic dissemination through conferences and papers and providing all developed work as open source, the PIs will capitalize on their involvement in engineering committees (e.g. AISC, AISI etc.) to disseminate the findings outside of the academic community.
本项目将研究薄壁结构非线性稳定性分析的先进框架,同时考虑与几何缺陷相关的不确定性。薄壁结构最常见的失效模式是屈曲失效。这种屈曲是良性的还是灾难性的,在很大程度上取决于结构的细节,最重要的是它的几何缺陷。 研究的目的是提供一个飞跃的不确定性量化和模型验证的薄壁结构的分析,通过设计一个概率范式,使用先进的不确定性量化技术沿着与新的结构分析方法。几何不确定性的表征和表示方法以及概率缺陷灵敏度分析框架的建议,有可能铺平道路的薄壁结构的完全随机非线性分析。所提出的技术是由高精度的缺陷实验测量和不完美的members.If成功的测试补充,这项研究的结果将改变如何在薄壁结构的先进的基于分析的设计中处理几何缺陷。由于该项目中采用的随机方法具有非常普遍的性质和几何学驱动的性质,所开发的方法将适用于各种各样的问题,并将对所有科学和工程学科产生潜在的影响。除了研究生指导,本科生研究将是马萨诸塞州达特茅斯大学(UMD)和约翰霍普金斯大学(JHU)努力的重点。参与的本科生将被要求与当地高中和社区大学的学生以及参加UMD大一暑期学院的学生分享他们的经验,希望他们的成功能被其他人效仿。此外,与专门针对代表性不足的群体的计划合作,邀请合格的学生参加这两所大学的研究。除了通过会议和论文进行学术传播,并将所有开发的工作作为开源提供外,PI还将利用其参与工程委员会(例如AISC,AISI等)的机会。在学术界之外传播研究结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mazdak Tootkaboni其他文献
Learning texture-property relationships for brittle porous materials: A Bayesian approach with graph-theoretical features
学习脆性多孔材料的纹理-性能关系:一种具有图论特征的贝叶斯方法
- DOI:
10.1016/j.cma.2024.117682 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.300
- 作者:
Xuejing Wang;Shayan Razi;Zheng Chen;Arghavan Louhghalam;Mazdak Tootkaboni - 通讯作者:
Mazdak Tootkaboni
Mazdak Tootkaboni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mazdak Tootkaboni', 18)}}的其他基金
Collaborative Research: A Data-centric Uncertainty-informed Framework for Resilience Analytics of Critical Infrastructure Under Extreme Climate Events
协作研究:以数据为中心、基于不确定性的框架,用于极端气候事件下关键基础设施的复原力分析
- 批准号:
1826155 - 财政年份:2019
- 资助金额:
$ 21.53万 - 项目类别:
Standard Grant
CAREER: Predictive Analysis of Stability-Critical Structures: an Uncertainty-Informed Path from Measurements to Theory
职业:稳定性关键结构的预测分析:从测量到理论的不确定性路径
- 批准号:
1351742 - 财政年份:2014
- 资助金额:
$ 21.53万 - 项目类别:
Standard Grant
Collaborative Research: Optimal Design of Flaw-tolerant Structures and Material Microarchitectures via Stochastic Topology Optimization
合作研究:通过随机拓扑优化进行容错结构和材料微体系结构的优化设计
- 批准号:
1401575 - 财政年份:2014
- 资助金额:
$ 21.53万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343728 - 财政年份:2024
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303568 - 财政年份:2023
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
- 批准号:
2222097 - 财政年份:2023
- 资助金额:
$ 21.53万 - 项目类别:
Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
- 批准号:
2334551 - 财政年份:2023
- 资助金额:
$ 21.53万 - 项目类别:
Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
- 批准号:
2222096 - 财政年份:2023
- 资助金额:
$ 21.53万 - 项目类别:
Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303566 - 财政年份:2023
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303567 - 财政年份:2023
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210811 - 财政年份:2022
- 资助金额:
$ 21.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




